

Ministério da Educação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba

PLANO DE ENSINO

CURSO	Engenharia Elétrica Engenharia de Controle e Automação	MATRIZ	708 e 709
-------	---	--------	-----------

FUNDAMENTAÇÃO	Resolução 25/11-COGEP
LEGAL	Resolução 24/11-COGEP

DISCIPLINA/UNIDADE CURRICULAR	CÓDIGO		CARGA HORÁRIA (aulas)			
Sistema de Controla Bobusto Multivarióval	ET7GG		ΑT	AP	APS	Total
Sistema de Controle Robusto Multivariável			34	34	4	72
AT: Atividades Teóricas	AP: Atividades	Práti	icas APS:	Atividades P	ráticas Sune	rvisionadas

PRÉ-REQUISITO	Estar matriculado a partir do 7° período.
EQUIVALÊNCIA	

OBJETIVO

Propiciar ao aluno o conhecimento teórico e prático sobre sistemas de controle robusto multivariável.

EMENTA

Revisão do caso SISO, o caso MIMO, modelo da planta, controle descentralizado, design multivariável, design para robustez.

ITEM	EMENTA	CONTEÚDO
1		O sistema nominal: estabilidade e desempenho. O sistema real: erro de modelagem, desempenho versus estabilidade. Design no espaço de estados.
2	O caso MIMO.	Resposta em frequência multivariável. Observabilidade e controlabilidade.
3	Modelo da planta.	Representação do erro de modelagem no espaço de estados.
4		Separação das variáveis temporalmente ou espacialmente para uso em controlador tipo cascata ou diagonal.
5	Design multivariável.	Regulador Linear Quadrático, controle H2 e H infinito.
6		Robustez da malha objetivo e margens de estabilidade multivariáveis. Casamento dos valores singulares em baixas e atas frequências, procedimento de projeto.

Referências básicas:

- 1. CRUZ, J. J. Controle Robusto Multivariável: o método LQG/LTR. São Paulo: EDUSP, 1996. 163 p. ISBN 85-314-0341-3.
- SKOGESTAD, S.; POSTLETHWAITE, I. Multivariable Feedback Control: analysis and design. 2nd ed. Chichester: J. Wiley & Sons, c2005. xiv, 574 p. ISBN 9780470011683.
- 3. GREEN, M. Linear Robust Control. Mineola, NY: Dover Publications, 2012. xv, 538 p. ISBN 9780486488363.

Referências Complementares:

- 1. GASPARYAN, O. **Linear and Nonlinear Multivariable Feedback Control: a classical approach** . Chichester, U.K.: John Wiley, 2008. xii, 341 p. ISBN 9780470061046 (enc.).
- 2. MACIEJOWSKI, J M. Multivariable Feedback Design. Addison Wesley, 1989. xv, 480 p. ISBN 978-0201182439.
- 3. ZHOU, K, DOYLE, Je GLOVER, K. Robust and Optimal Control. Prentice Hall, 1995. 596 p. ISBN 9780134565675.
- 4. FREEMAN, R A e KOKOTOVIC, P V Robust Nonlinear Control Design State Space and Lyapunov Techniques. Birkhauser Boston, 1996. xvi, 257 p. ISBN 9780817647599.
- 5. SALA, A. **Multivariable Control Systems: an engineering approach** . London, GB: Springer-Verlag, c2004. xviii, 340 p. ISBN 1852337389.

Sistema de Avaliação:

A aprovação dar-se-á por Nota Final, proveniente de avaliações realizadas ao longo do semestre letivo, e por freqüência.

Considerar-se-á aprovado na disciplina, o aluno que tiver frequência igual ou superior a 75% (setenta e cinco por cento) e Nota Final igual ou superior a 6,0 (seis), consideradas todas as avaliações previstas no Plano de Aulas

Para possibilitar a recuperação do aproveitamento acadêmico, o professor proporcionará reavaliação ao longo e/ou ao final do semestre letivo.