
COORDENAÇÃO ELO FUSIVEL COM RELIGADOR

Esquema do circuito analisado

Elos dos transformadores de distribuição

Considerando a tensão de 13,8 kV e que todos os transformadores são trifásicos, da tabela (Tabela 8.5) obtemos os seguintes elos:

Potência do transformador (kVA)	13,8 kV
30	2H
75	5H
100	6K

Religador

Os critérios de ajuste utilizados foram:

1) Disparo de fase
$$ightharpoonup FC imes I_{CARGA\ MÁX} \leq I_{PICKUP\ F} < \frac{I_{CC2F}}{FS}$$

2) Disparo de neutro
$$\rightarrow$$
 $I_{DESBALANÇO} < I_{PICKUPN} < \frac{I_{CCFT \, M\'{N}}}{FS}$

Segundo o manual da CPFL, para religadores com bobina série, deve-se considerar para o ajuste do disparo de fase apenas:

$$I_{\scriptscriptstyle N} > \mathit{KF} \times I_{\scriptscriptstyle CARGA}$$
 ou $I_{\scriptscriptstyle PF} > 2 \times \mathit{KF} \times I_{\scriptscriptstyle CARGA}$

Onde:

I_N – corrente nominal da bobina série

KF – fator de crescimento da carga no horizonte de estudo (=FC)

Icarga – corrente de carga passante no ponto de instalação

IPF – corrente de pick-up do religador

Para estes religadores $I_{PF} = 2 \times I_N$.

Assim:

$$I_{pf} > 2 \times 1,6105 x30 =$$
 $\blacksquare I_{pf} > 96,63$

Utilizando um religador tipo OYT da REYROLLE (corrente nominal 250 A ou 400 A, tensão nominal 14,4 kV), temos as seguintes possibilidades:

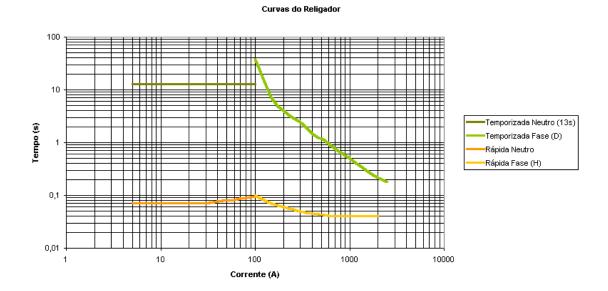
Bobinas séries dos religadores OYT

Corrente	Corrente de	Capacidade de interrupção			
Corrente nominal		até 11 kV		à 13,8 kV	
	"pick-up "	Sim.	Assim.	Sim.	Assim.
5	10	1056	1510	1056	1600
10	20	2112	3020	2112	3200
15	30	5250	7500	4000	6050
20	40	5250	7500	4000	6050
25	50	5250	7500	4000	6050
30	60	5250	7500	4000	6050
35	70	5250	7500	4000	6050
50	100	5250	7500	4000	6050
75	150	5250	7500	4000	6050
100	200	5250	7500	4000	6050
150	300	5250	7500	4000	6050
200	400	5250	7500	4000	6050
250	500	5230	7500	4000	6050

Da tabela acima, escolheu-se o religador com bobina série de corrente nominal **50 A** e corrente de pick-up **100 A**.

Neste religador, o sensor para defeitos à terra é eletrônico e pode ser ajustado em **5 A, 10 A e 20 A**. Como a corrente de desbalanço é desconhecida, a corrente de disparo de neutro deve ser pelo menos menor do que a IccFT mínima dividida pelo fator de segurança. Considerando um fator de segurança igual a 2, temos:

$$I_{PICKUPN} < \frac{I_{CCFT \, MIN}}{FS} \Rightarrow I_{PICKUPN} < \frac{60}{2} \Rightarrow I_{PICKUPN} < 30 \, \text{A}$$


Logo, qualquer um dos valores possíveis pode ser usado para ajuste do sensor de terra.

Os religadores OYT apresentam apenas uma curva rápida de fase, a curva H e duas curvas temporizadas, KI e Ks, sendo que alguns religadores apresentam uma terceira curva, D.

No presente trabalho, foi escolhida a curva **D**, mais lenta das três curvas possíveis, porém a que se consegue uma faixa de coordenação maior.

Para operação de terra, os religadores OYT apresentam uma curva de operação rápida e várias curvas temporizadas (0,5 s; 1 s; 2 s; 5 s; 9 s e 13 s). Neste caso foi escolhida a curva temporizada de **13 s.**

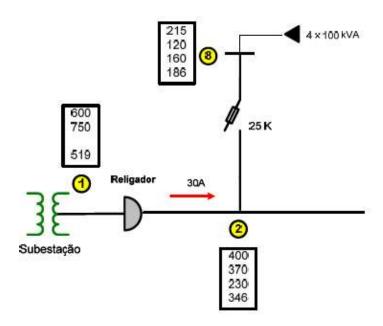
Abaixo, está o gráfico com as curvas do religador:

Quanto ao número de operações, os religadores OYT permitem o ajuste do número total de operações para o bloqueio em 1, 2, 3 ou 4 operações. O número de operações para bloqueio é o mesmo para fase, terra ou mesmo para uma combinação de operações de fase e terra.

A seqüência de operações é a mesma para fase e terra. No ponto de instalação do religador, a corrente de Inrush é:

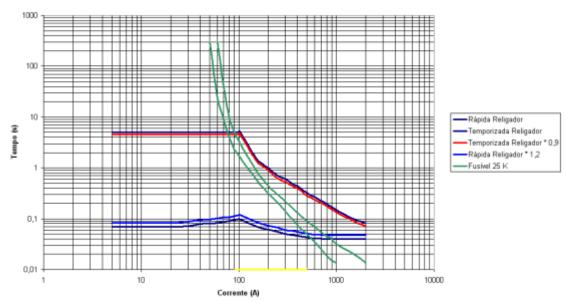
$$Inruch = FM \times Inc \min \ al = 6 \times \frac{8*30+1*75+6*100}{\sqrt{3} \times 13,8} = 229,6850 \ A$$

Como as curvas rápidas possuem tempos inferiores a 0,1 s, então elas podem ser sensíveis às correntes de Inrush, já que o pick-up de fase é menor do que a Inrush esperada. A simples retirada da curva rápida evitaria a operação do religador, mas isso o impediria de realizar a sua função principal. Uma forma de se diminuir o número de operações, devido às correntes de Inrush, é usar uma única operação rápida para o religador.

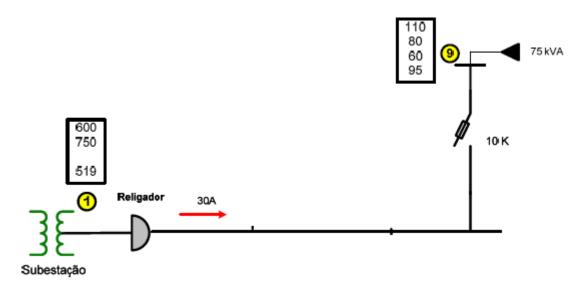

Assim, a seqüência de operação do religador terá **uma operação rápida e três operações lentas**.

Coordenação religador-fusível

O religador deve estar coordenado com todos os elos. Os elos A e C são do tipo 40 K e os elos B e D são do tipo 15K.


Como o tempo de religamento dos religadores OYT é de 2 segundos (120 ciclos) e o religador em questão tem apenas uma operação rápida, o fator **K** que multiplica as curvas rápidas será igual a **1,2**.

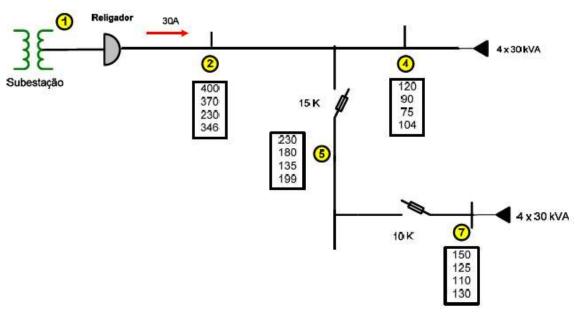
1) Para o primeiro trecho, o religador precisa estar coordenado com o elo de 25 K. Abaixo se encontra o trecho considerado:


Abaixo, estão as curvas do elo 25 K, as curvas do religador e o intervalo de coordenação conseguido em destaque no eixo do gráfico.

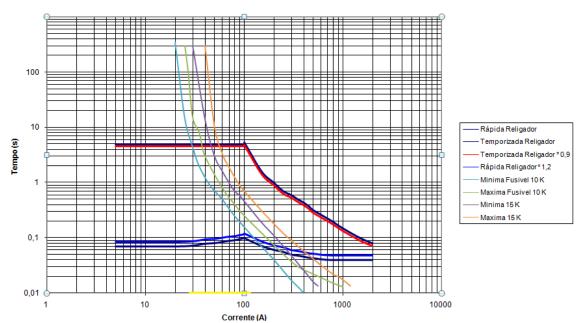
Coordenação Religador-Fusível

Nota-se que para o elo A o intervalo de coordenação abrange a corrente de falta máxima (Icc3F = 400 A no ponto 2) e mínima (IccFT = 120 A no ponto 8).

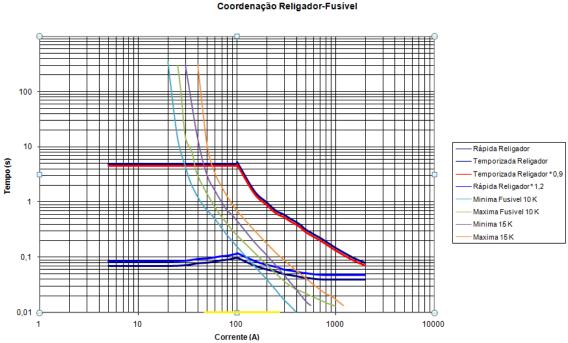
2) Para o segundo trecho, o religador precisa estar coordenado com o elo 10 K. Abaixo se encontra o trecho considerado:


Abaixo, estão as curvas do elo 10 K, as curvas do religador e o intervalo de coordenação conseguido em destaque no eixo do gráfico.

Coordenação Religador-Fusível


Nota-se que para o elo B o intervalo de coordenação abrange a corrente de falta máxima (Icc3F = 120 A no ponto 4) e mínima (IccFT mínima = 60 A no ponto 9).

3) Para o terceiro trecho, o religador precisa estar coordenado com os elos 15 K e 10 K respectivamente. Abaixo se encontra o trecho considerado:


Abaixo, estão as curvas do elo 15 K, do elo 10 K, as curvas do religador e o intervalo de coordenação conseguido entre o religador e o elo 15 K, em destaque no eixo do gráfico.

Coordenação Religador-Fusível

Nota-se que para o elo 10K o intervalo de coordenação abrange apenas a IccFTmínima=110 A no ponto.

Abaixo, estão as curvas do elo 15 K, do elo 10 K, as curvas do religador e o intervalo de coordenação conseguido entre o religador e o elo 15 K, em destaque no eixo do gráfico.

Nota-se que para o elo 15K o intervalo de coordenação abrange a corrente de falta máxima (Icc3F = 260 A no ponto 3) e também a corrente de falta mínima (IccFT mínima = 110 A no ponto 7).