CAPACITORES

Professor: Paulo Cícero Fritzen

E-mail: pcfritzen@utfpr.edu.br

CAPACITORES

Capacitor: componente formado por duas Placas Condutoras, também chamadas de "Armadura", separadas por um material isolante (dielétrico).

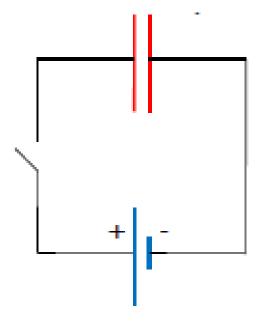


❖ O Capacitor é um componente que tem a capacidade de armazenar energia no seu campo elétrico.

CAPACITORES

Relação Carga - Tensão:

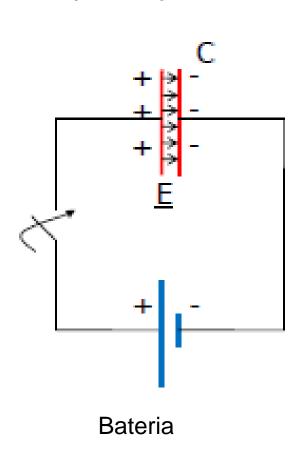
C (inicialmente descarregado)



Bateria

CAPACITORES

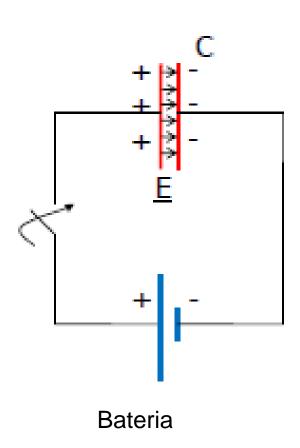
Relação Carga - Tensão:



- ➤ A bateria realiza um trabalho, durante um certo período de tempo (tempo de carga do capacitor), de transportar, de uma placa à outra, uma carga "-q", isto é, a bateria retira uma carga "-q" de uma das placas e deposita na outra (não há corrente entre as placas material isolante)
 - Esse transporte para quando a "ddp" entre as placas do capacitor for igual a "ddp" da pilha.

CAPACITORES

Relação Carga - Tensão:



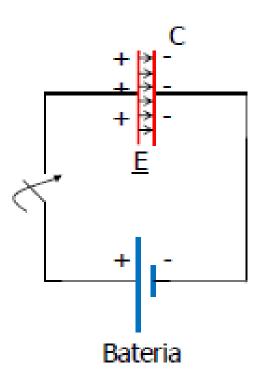
Determinou-se, experimentalmente, que a "ddp" entre as placas é proporcional à carga transferida:

$$V = \frac{Q}{C} \tag{1} \begin{cases} \text{C - Capacitância (cte de proporcionalidade)} \\ \text{Q - módulo da carga elétrica} \\ \text{em qq umas das placas} \\ \text{V - tensão aplicada} \end{cases}$$

- Unidade: Farad (F), em homenagem ao físico inglês Michael Faraday
 1F = 1C / 1Volts
- A capacitância depende da geometria do condutor e do dielétrico utilizado

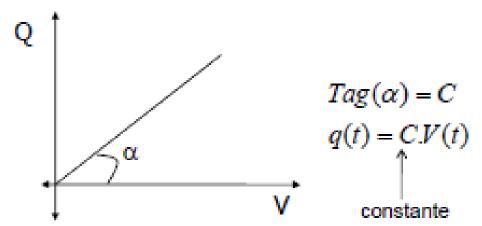
CAPACITORES

Relação Carga - Tensão:



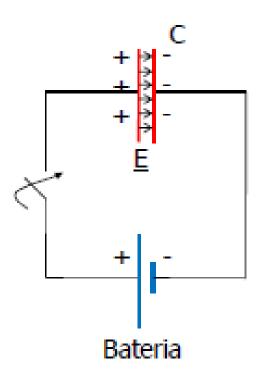
$$V = \frac{Q}{C}$$
 (1)

Capacitores Lineares: aqueles que satisfazem a equação (1)



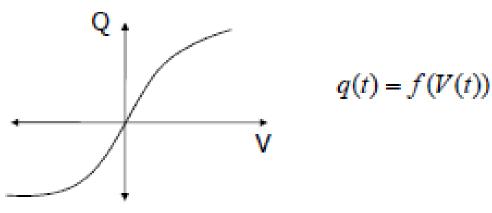
CAPACITORES

Relação Carga - Tensão:



$$V = \frac{Q}{C}$$
 (1)

Capacitores Não Lineares: aqueles que não satisfazem a equação (1)



Exemplo: Diodo Varactor (circuitos de comunicação)

ENERGIA ARMAZENADA NOS CAPACITORES

✓ Armazenada no campo elétrico.

✓ Devido ao trabalho desprendido para carregar o capacitor.

CAPACITORES

Relação Corrente-Tensão

$$i = \frac{dq}{dt}$$
 \Longrightarrow $q = CV$ \Longrightarrow $i = C\frac{dV}{dt}$

- Quanto mais rápida "V" se alterar, maior é a corrente que flui nos terminais do capacitor. Em geral, uma mudança abrupta ou instantânea na tensão exige que uma corrente infinita flua pelo capacitor
- Uma corrente "infinita" requer que exista um potência infinita nos terminais do capacitor, o que é fisicamente impossível
 - O capacitor se opõe a mudança brusca na tensão

CAPACITORES

Relação Corrente-Tensão

$$i = \frac{dq}{dt}$$
 \Longrightarrow $q = CV$ \Longrightarrow $i = C\frac{dV}{dt}$

$$i = C \frac{dV}{dt}$$
 \Longrightarrow $i.dt/C = dV$

 Para encontrar "v(t)" em função da corrente "i(t)", integramos ambos os lados da equação acima entre os instantes de tempo "t₀" e "t" e as correspondentes voltagens "v(t₀)" e "v(t)":

$$\int_{t_0}^t \frac{i}{C} dt = \int_{v(t_0)}^{v(t)} dV \implies v(t) = \frac{1}{C} \int_{t_0}^t i \cdot d(t) + v(t_0)$$

CAPACITORES

Relação Tensão-Corrente

$$v(t) = \frac{1}{C} \int_{t_0}^{t} i \cdot d(t) + v(t_0)$$

Onde:

 v(t) – representa a tensão acumulada no capacitor no intervalo de tempo entre "t₀" e "t"

v(t₀) = q₀ / C - é a tensão no capacitor no tempo "t₀", isto é, representa a tensão acumulada na capacitor entre "-∞" e "t₀"

CAPACITORES

Relação Tensão-Corrente

$$v(t) = \frac{1}{C} \int_{t_0}^{t} i \cdot d(t) + v(t_0)$$

Fazendo v(-∞) = 0, uma forma alternativa de expressar a relação acima é:

$$v(t) = \frac{1}{C} \int_{-\infty}^{t} i \cdot d(t)$$

CAPACITORES

Energia Armazenada (no campo elétrico)

$$i = C \frac{dV}{dt} \qquad v(t) = \frac{1}{C} \int_{-\infty}^{t} i \cdot d(t)$$

A tensão aplicada aos terminais de um capacitor é acompanhada de uma separação de cargas elétricas entre as placas do capacitor

Campo Elétrico dentro do capacitor

$$w_c(t) = \int_{-\infty}^{t} p(t) \cdot dt = \int_{-\infty}^{t} v \cdot \left(C \frac{dv}{dt} \right) dt = C \int_{-\infty}^{t} v \cdot dv = C \left[\frac{1}{2} v^2 \right]_{-\infty}^{t}$$

CAPACITORES

Energia Armazenada (no campo elétrico)

$$i = C \frac{dV}{dt} \qquad v(t) = \frac{1}{C} \int_{-\infty}^{t} i \cdot d(t)$$

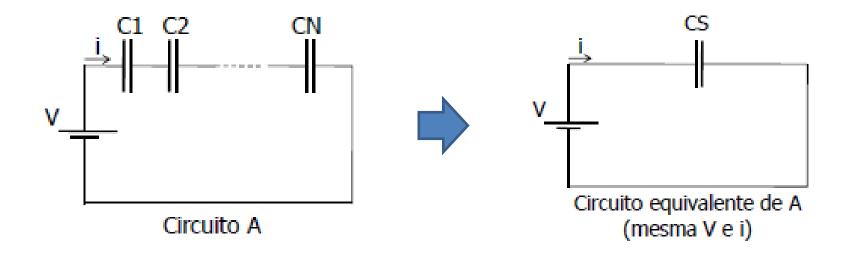
A tensão aplicada aos terminais de um capacitor é acompanhada de uma separação de cargas elétricas entre as placas do capacitor

Campo Elétrico dentro do capacitor

$$v(-\infty) = 0 \implies w_c(t) = \frac{C}{2}v^2(t) \ge 0$$
 Componente Passivo

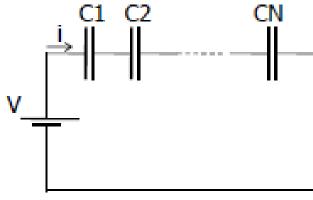
ASSOCIAÇÃO DE CAPACITORES

☐ CAPACITORES LIGADOS EM SÉRIE



ASSOCIAÇÃO DE CAPACITORES

☐ CAPACITORES LIGADOS EM SÉRIE



$$V = V1 + V2 + ... + VN$$

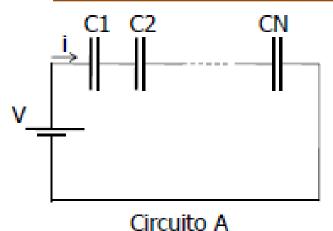
Temos que:
$$V1(t) = \frac{1}{C1} \int_{t_0}^{t} idt + V1(t_0)$$

Logo:

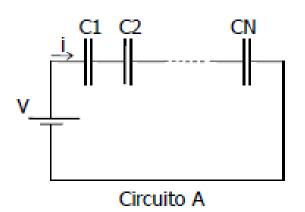
$$V(t) = \frac{1}{C1} \int_{t_0}^t i dt + V1(t_0) + \dots + \frac{1}{CN} \int_{t_0}^t i dt + VN(t_0) > \text{Corrente \'e igual para todos os capacitores}$$

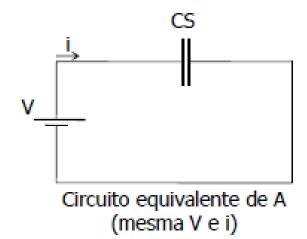
ASSOCIAÇÃO DE CAPACITORES

□ CAPACITORES LIGADOS EM SÉRIE



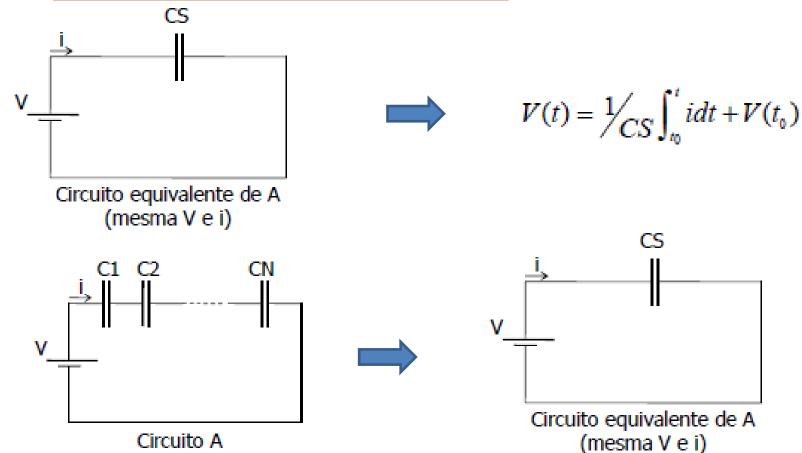
$$V(t) = \sum_{i=1}^{N} \frac{1}{Ci} \int_{t_0}^{t} i dt + V(t_0)$$
onde: $V(t_0) = V1(t_0) + ... + VN(t_0)$





ASSOCIAÇÃO DE CAPACITORES

☐ CAPACITORES LIGADOS EM SÉRIE



ASSOCIAÇÃO DE CAPACITORES

□ CAPACITORES LIGADOS EM SÉRIE

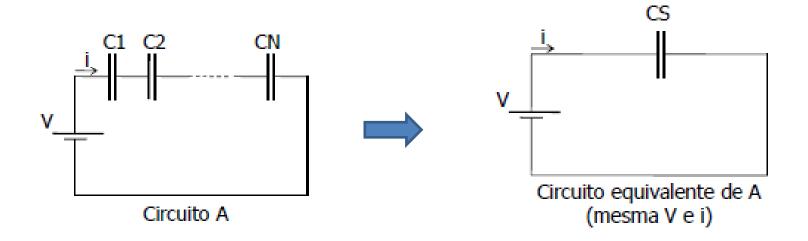
Equivalência:

$$V(t) = \sum_{i=1}^{N} \frac{1}{Ci} \int_{t_0}^{t} idt + V(t_0)$$
onde: $V(t_0) = V1(t_0) + ... + VN(t_0)$

$$V(t) = \frac{1}{CS} \int_{t_0}^{t} i dt + V(t_0)$$

ASSOCIAÇÃO DE CAPACITORES

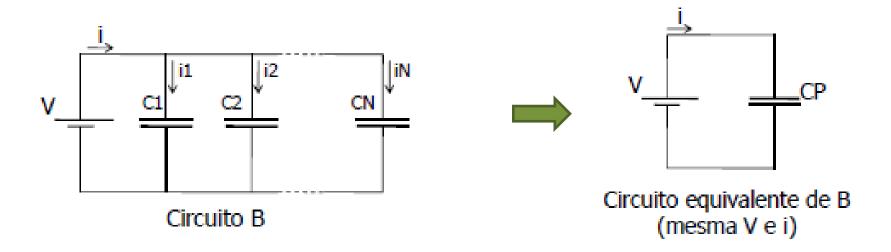
□ CAPACITORES LIGADOS EM SÉRIE



$$\frac{1}{CS} = \sum_{i=1}^{N} \frac{1}{Ci}$$

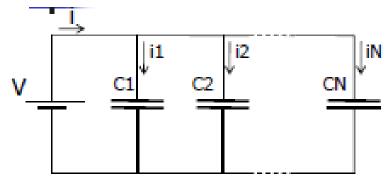
ASSOCIAÇÃO DE CAPACITORES

□ CAPACITORES LIGADOS EM PARALELO



ASSOCIAÇÃO DE CAPACITORES

☐ CAPACITORES LIGADOS EM PARALELO



Circuito B

LKI – Nó superior:

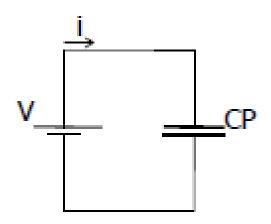
$$i = i1 + i2 + ... + iN$$

$$i = C1\frac{dV}{dt} + C2\frac{dV}{dt} + ... + CN\frac{dV}{dt}$$
 Tensão é a mesma para todos os capacitores

$$i = \sum_{t=1}^{N} Ci \frac{dV}{dt}$$

ASSOCIAÇÃO DE CAPACITORES

☐ CAPACITORES LIGADOS EM PARALELO

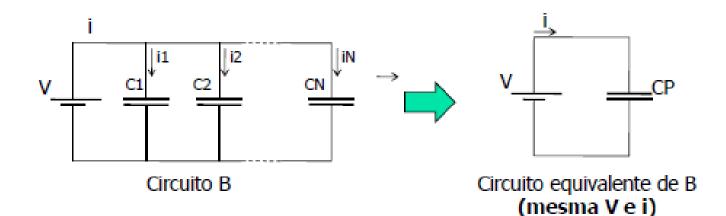


$$i = CP \frac{dV}{dt}$$

Circuito equivalente de B (mesma V e i)

ASSOCIAÇÃO DE CAPACITORES

☐ CAPACITORES LIGADOS EM PARALELO



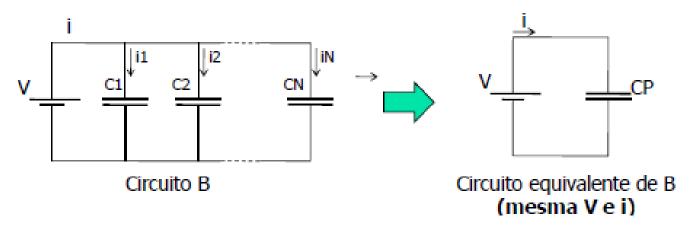
Equivalência:

$$i = \sum_{i=1}^{N} Ci \frac{dV}{dt}$$

$$i = CP \frac{dV}{dt}$$

ASSOCIAÇÃO DE CAPACITORES

☐ CAPACITORES LIGADOS EM PARALELO



Equivalência:

$$CP = \sum_{i=1}^{N} Ci$$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

- ✓ Em Regime Permanente CC (RPCC)
- ✓ Em Regime Transitório (RT)

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Permanente CC (RPCC)

$$i = C \frac{dV}{dt}$$
 $V = constante$ $i = 0$

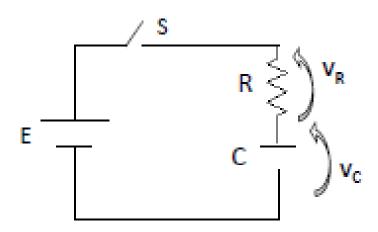
Capacitor em RPCC é um circuito aberto

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

Corresponde ao período de carga e descarga do capacitor

Circuito de Carga de um capacitor



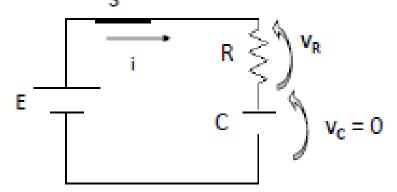
Inicialmente o capacitor está descarregado:

$$q_0 = 0$$
, $v_C = q_0 / C = 0$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

- Circuito de Carga
- -Em t = 0 fechamos a chave "S": nesse instante "i" é máxima (I_{Max}) limitada apenas pelo Resistor "R", pois, v_c = 0;
- -Temos o seguinte circuito:

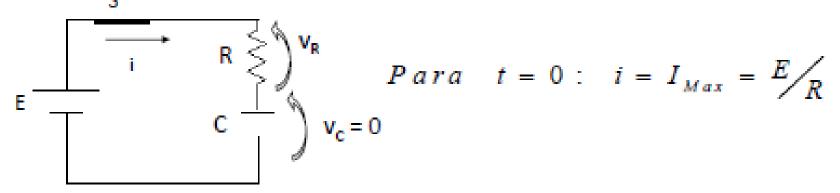


LKT:
$$\begin{bmatrix} E - v_R - v_C = 0 \rightarrow v_C = 0 \rightarrow E = v_R = I_{Max}.R \\ I_{Max} = E/R \end{bmatrix}$$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

- Circuito de Carga
- -Em t = 0 fechamos a chave "S" (nesse instante "i" é máxima (I_{Max)}) limitada apenas pelo Resistor "R", pois, V_C = 0;
- -Temos o seguinte circuito:



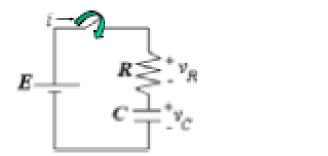
LKT:
$$E = v_R + v_C$$

Depois de determinado período de tempo, o capacitor fica completamente carregado e i = 0 (em RPCC - Capacitor é um circuito Aberto)

Logo:
$$v_c = E$$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

- ✓ Em Regime Transitório (RT)
- Circuito de Carga
- Para um tempo t qualquer (t > 0), antes de i = 0, temos:



$$E - v_R - v_C = 0$$

Sendo "q" e "i" a carga do capacitor e a corrente do circuito no tempo "t":

$$E - R \cdot i - \frac{q}{C} = 0$$
 \rightarrow $i = \frac{E}{R} - \frac{q}{RC}$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

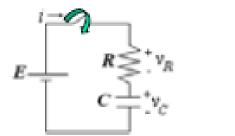
- ✓ Em Regime Transitório (RT)
- Circuito de Carga
- Para um tempo t qualquer (t > 0), antes de i = 0, temos:

À medida que "q" aumenta, "q/RC" aumenta diminuindo "i". Quando "q" atinge o seu valor final, "Q_i", i = 0. Logo:

$$0 = \frac{E}{R} - \frac{Q_f}{RC} \qquad \rightarrow \qquad Q_f = CE$$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

- ✓ Em Regime Transitório (RT)
 - Circuito de Carga
 - Para um tempo t qualquer (t > 0), antes de i = 0, temos:



$$i = \frac{E}{R} - \frac{q}{RC}$$

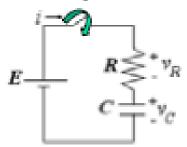
À medida que "q" aumenta, "q/RC" aumenta diminuindo "i". Quando "q" atinge o seu valor final, "Q_i", i = 0. Logo:

$$Q_f = CE$$

"Q_f" não depende de "R"

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

- ✓ Em Regime Transitório (RT)
 - Circuito de Carga
 - Equação de "q" em função do tempo:



$$i = \frac{dq}{dt}$$

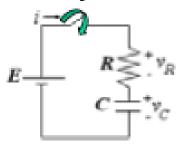
$$i = \frac{E}{R} - \frac{q}{RC}$$

$$\frac{dq}{dt} = \frac{E}{R} - \frac{q}{RC}$$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

- Circuito de Carga
- Equação de "q" em função do tempo:



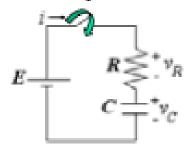
$$\frac{dq}{dt} = \frac{-1}{RC}(q - CE)$$

Agrupando:

$$\frac{dq}{(q - CE)} = \frac{-dt}{RC}$$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

- ✓ Em Regime Transitório (RT)
- Circuito de Carga
- Equação de "q" em função do tempo:



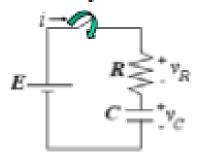
Integrando ambos os membros (mudando os nomes das variáveis p/ q' e t'):

$$\int_0^q \frac{dq'}{(q'-CE)} = -\int_0^t \frac{dt'}{RC} \rightarrow \ln\left(\frac{q-CE}{-CE}\right) = \frac{-t}{RC}$$

Tomando a função exponencial de ambos os lados:

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

- ✓ Em Regime Transitório (RT)
- Circuito de Carga
- Equação de "q" em função do tempo:

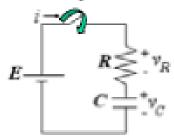


$$\frac{q-CE}{-CE} = e^{-t/RC} \longrightarrow q = -CEe^{-t/RC} + CE = CE\left(1 - e^{-t/RC}\right)$$

$$q = Q_f\left(1 - e^{-t/RC}\right)$$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

- ✓ Em Regime Transitório (RT)
- Circuito de Carga
- Equação de "q" em função do tempo:



$$\frac{q - CE}{-CE} = e^{-t/RC}$$

$$\rightarrow$$

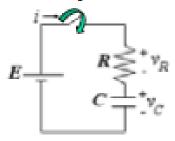
$$\rightarrow$$
 $q = -CEe^{-t/RC} + CE = CE(1 - e^{-t/RC})$

$$q = Q_f \left(1 - e^{-t/RC} \right)$$

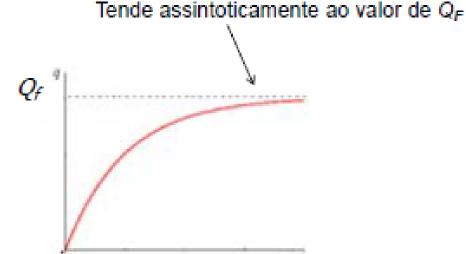
Equação de carga do capacitor (em função de "q")

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

- ✓ Em Regime Transitório (RT)
 - Circuito de Carga
 - Equação de "q" em função do tempo:



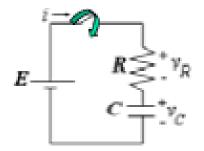
$$q = Q_f \left(1 - e^{-t/RC} \right)$$



COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

Circuito de Carga



➤ Lembrando que "v_c(t) = q(t) /C":

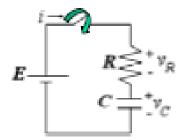
$$v_C(t) = \frac{Q_f}{C} \left(1 - e^{-t/RC} \right) = \frac{CE}{C} \left(1 - e^{-t/RC} \right)$$

$$v_C(t) = E\left(1 - e^{-t/RC}\right)$$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

Circuito de Carga



➤ Lembrando que "v_c(t) = q(t) /C":

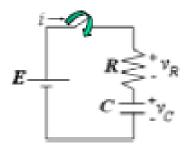
$$v_C(t) = \frac{Q_f}{C} \left(1 - e^{-t/RC} \right) = \frac{CE}{C} \left(1 - e^{-t/RC} \right)$$

$$v_C(t) = E\left(1 - e^{-t/RC}\right)$$

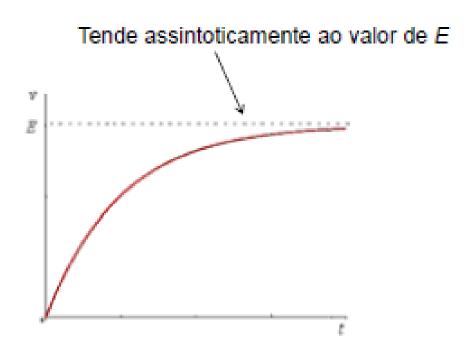
Equação de carga do capacitor (em função de " v_c ")

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

- ✓ Em Regime Transitório (RT)
 - Circuito de Carga



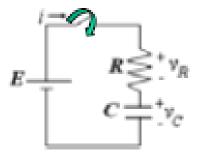
$$v_C(t) = E\left(1 - e^{-t/RC}\right)$$



COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

Circuito de Carga



Lembrando, ainda, que "i(t) = dq(t) / dt":

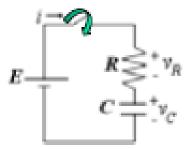
$$i(t) = \frac{d\left[Q_f\left(1 - e^{-t/RC}\right)\right]}{dt} = \frac{Q_f}{RC}e^{-t/RC} = \frac{CE}{RC}e^{-t/RC}$$

$$i(t) = \frac{E}{R}e^{-t/RC}$$
 \rightarrow $i(t) = I_{Max}e^{-t/RC}$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

Circuito de Carga



Lembrando, ainda, que "i(t) = dq(t) / dt":

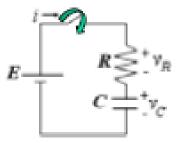
$$i(t) = I_{M\!\alpha\!\alpha} e^{-t/RC}$$

Equação de carga do capacitor (em função de "/")

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

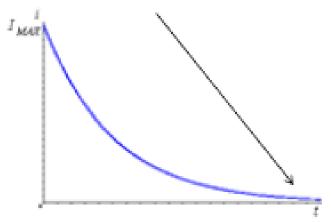
Circuito de Carga



$$i(t) = I_{Max}e^{-t/RC}$$

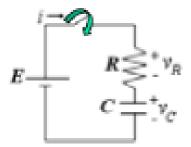
-Tende assintoticamente à zero

Em RPCC – Circuito aberto



COMPORTAMENTO DOS CAPACITORES EM REGIME CC

- ✓ Em Regime Transitório (RT)
- Circuito de Carga



"RC" denomina-se constante de tempo do circuito, representado pela letra grega "τ" (é o tempo necessário para que o valor da corrente "i" diminua de um fator de "1/e"):

$$\tau = RC$$

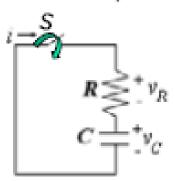
Unidade:

$$\tau = RC = \Omega F = Segundos$$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

- Circuito de Descarga (circuito sem fonte)
 - Inicialmente o capacitor está carregado com uma carga "Q₀"
 - Em "t = 0" fechamos a chave "S": q = Q₀
 - O capacitor vai descarregar através do resistor e sua carga vai diminuir até zero: i_f = 0 (a corrente final no circuito é nula)

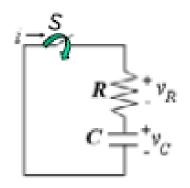


 Designamos "i" e "q" a corrente do circuito e a carga do capacitor em função do tempo respectivamente

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

- Circuito de Descarga (circuito sem fonte)
 - Inicialmente o capacitor está carregado com uma carga "Q₀"
 - Em "t = 0" fechamos a chave "S": q = Q₀



LKT em "t"qualquer:

$$-v_R - v_C = 0$$

$$-R \cdot i - q/C = 0$$

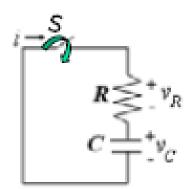
$$i = -\frac{q}{R \cdot C}$$

 Sinal negativo porque uma carga positiva "q" está deixando a placa superior do capacitor:

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

- Circuito de Descarga (circuito sem fonte)
 - Inicialmente o capacitor está carregado com uma carga "Q₀"
 - Em "t = 0" fechamos a chave "S": q = Q₀



- LKT em "t"qualquer:

$$i = -\frac{q}{R \cdot C}$$

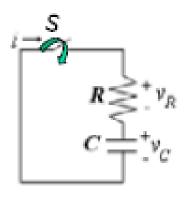
- Para "
$$t = 0$$
", " $q = Q_0$ ", temos " I_{Max} ":

$$I_{Max} = -\frac{Q_0}{R \cdot C}$$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

- Circuito de Descarga (circuito sem fonte)
 - Inicialmente o capacitor está carregado com uma carga "Q₀"
 - Em "t = 0" fechamos a chave "S": q = Q₀



Equação de "q" em função do tempo:

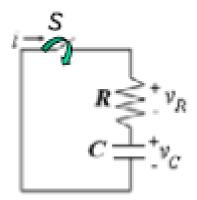
$$i = \frac{dq}{dt} = -\frac{q}{R \cdot C} \rightarrow \frac{dq}{q} = \frac{-dt}{RC}$$

Integrando ambos os membros (mudando os nomes das variáveis p/ q' e t'):

$$\int_{Q_0}^{q} \frac{dq'}{q'} = -\int_0^t \frac{dt'}{RC} \rightarrow \ln \frac{q}{Q_0} = \frac{-t}{RC} \rightarrow q = Q_0 e^{\frac{-t}{RC}}$$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

- ✓ Em Regime Transitório (RT)
- Circuito de Descarga (circuito sem fonte)
 - Inicialmente o capacitor está carregado com uma carga "Q₀"
 - Em "t = 0" fechamos a chave "S": q = Q₀



Equação de "q" em função do tempo:

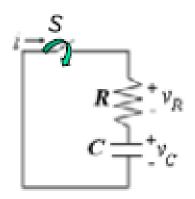
$$q = Q_0 e^{\frac{-t}{RC}}$$

Equação de descarga do capacitor (em função de "q")

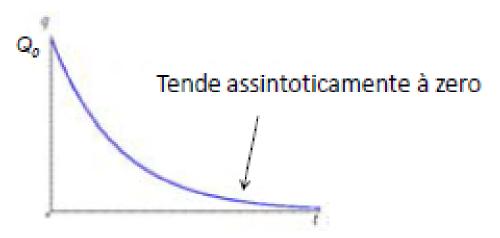
COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

- Circuito de Descarga (circuito sem fonte)
 - Inicialmente o capacitor está carregado com uma carga "Q₀"
 - Em "t = 0" fechamos a chave "S": q = Q₀

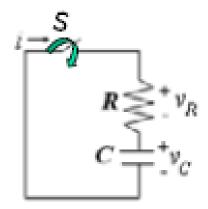


$$q(t) = Q_0 e^{\frac{-t}{RC}}$$



COMPORTAMENTO DOS CAPACITORES EM REGIME CC

- ✓ Em Regime Transitório (RT)
 - Circuito de Descarga (circuito sem fonte)
 - Inicialmente o capacitor está carregado com uma carga "Q₀"
 - Em "t = 0" fechamos a chave "S": q = Q₀

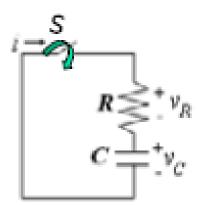


➤ Lembrando que "v_c(t) = q(t) /C":

$$v_C(t) = \frac{Q_0 e^{\frac{-t}{RC}}}{C} = V_{Max} e^{\frac{-t}{RC}}$$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

- ✓ Em Regime Transitório (RT)
- Circuito de Descarga (circuito sem fonte)
 - Inicialmente o capacitor está carregado com uma carga "Q₀"
 - Em "t = 0" fechamos a chave "S": q = Q₀



➤ Lembrando que "v_c(t) = q(t) /C":

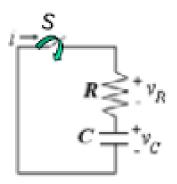
$$v_C(t) = V_{Max} e^{\frac{-t}{RC}}$$

Equação de descarga do capacitor (em função de " v_c ")

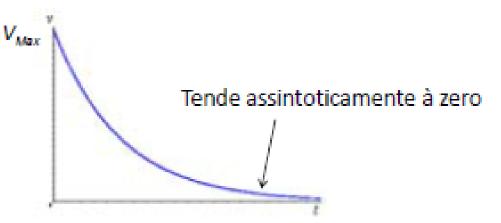
COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

- Circuito de Descarga (circuito sem fonte)
 - Inicialmente o capacitor está carregado com uma carga "Q₀"
 - Em "t = 0" fechamos a chave "S": q = Q₀



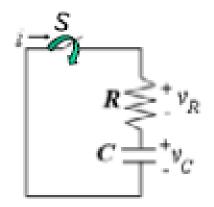
$$v_C(t) = V_{Max} e^{\frac{-t}{RC}}$$



COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

- Circuito de Descarga (circuito sem fonte)
 - Inicialmente o capacitor está carregado com uma carga "Q₀"
 - Em "t = 0" fechamos a chave "S": q = Q₀



Lembrando, ainda, que "i(t) = dq(t) / dt":

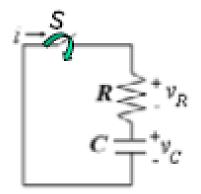
$$i = \frac{dq(t)}{dt} = \frac{-1}{RC} Q_0 e^{\frac{-t}{RC}}$$

$$i = -I_{MV} e^{\frac{-t}{RC}}$$

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

- Circuito de Descarga (circuito sem fonte)
 - Inicialmente o capacitor está carregado com uma carga "Q₀"
 - Em "t = 0" fechamos a chave "S": q = Q₀



Lembrando, ainda, que "i(t) = dq(t) / dt":

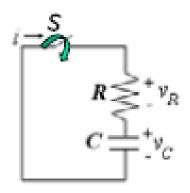
$$i = -I_{MAX}e^{\frac{-t}{RC}}$$

Equação de descarga do capacitor (em função de "i")

COMPORTAMENTO DOS CAPACITORES EM REGIME CC

✓ Em Regime Transitório (RT)

- Circuito de Descarga (circuito sem fonte)
 - Inicialmente o capacitor está carregado com uma carga "Q₀"
 - Em "t = 0" fechamos a chave "S": q = Q₀



$$i = -I_{MAX}e^{\frac{-t}{RC}}$$

