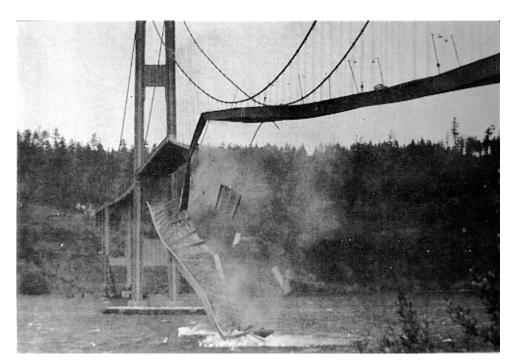


Introdução

- * Mecânica: Ciência que estuda o equilíbrio e o movimento de corpos sólidos, líquidos e gasosos, bem como as causas que provocam este movimento;
- * Em se tratando somente de líquidos e gases, que são denominados fluidos, recai-se no ramo da mecânica conhecido como **Mecânica dos Fluidos**.

Introdução

* Mecânica dos Fluidos: Ciência que trata do comportamento dos fluidos em repouso e em movimento. Estuda o transporte de quantidade de movimento nos fluidos.



* Exemplos de aplicações:

- * O estudo do comportamento de um furação;
- * O fluxo de água através de um canal;
- * As ondas de pressão produzidas na explosão de uma bomba;
- * As características aerodinâmicas de um avião supersônico;

Por que estudar Mecânica dos Fluidos?

Tacoma

Por que estudar

* O sistema de circulação do sangue no corpo humano é essencialmente um sistema de transporte de fluido e como consequência o projeto de corações e pulmões artificiais são baseados nos princípios da Mecânica dos Fluidos;

* O posicionamento da vela de um barco para obter maior rendimento com o vento e a forma e superfície da bola de golfe para um melhor desempenho são ditados pelos mesmos princípios.

14.3 Massa específica e pressão

Propriedade das substâncias representada pela razão entre sua massa e seu volume.

$$M.Especifica = \frac{massa}{volume}$$

ou simplesmente:

$$\rho = \frac{m}{V}$$

A letra grega ρ (rô) é normalmente usada para simbolizar a massa específica

Unidades:

No sistema cgs é g/cm³ No sistema internacional (SI) é kg/m³

Algumas Massas específicas(kg/m³)	
Ósmio	22,5 x10 ³
Ouro	19,3x10 ³
Mercúrio	13,6x10 ³
Chumbo	11,3x10 ³
Cobre	8,93x10 ³
Ferro	7,96 x10 ³
Terra (média)	5,52 x10 ³
Cimento	2,7-3,0 x10 ³
Alumínio	2,7 x10 ³
Vidro (comum)	2,4-2,8 x10 ³
Osso	1,7-2,0 x10 ³
Água do mar	1,025 x10 ³
Água	1,00 x10 ³
Gelo	0,92 x10 ³
Álcool (etanol)	0,806 x10 ³
Gasolina	0,68 x10 ³
Ar	1,213
Vapor de água	0,6 (100°C)
Hélio	0,1786

Uma unidade conveniente de volume para os fluidos é o litro (L):

$$1L = 10^3 \, cm^3 = 10^{-3} \, m^3$$

A 4°C, a massa específica da água é

$$1,00kg/L = 1,00g/mL = 1,00g/cm^3$$

Observações:

- •Se a massa específica de um corpo for maior que a da água, ele **afunda** na água;
- •Se a massa específica de um corpo for menor que a da água, ele flutua na água.

A razão entre a massa específica de uma substância e a massa específica da água é chamada de **densidade relativa** ou simplesmente **densidade.**

Ex. A densidade do alumínio é 2,7. Isto quer dizer que a massa do alumínio tem 2,7X a massa de água para um mesmo volume.

- •Os sólidos e líquidos dilatam muito pouco com a variação da temperatura, não influenciando significativamente no volume;
- •Os gases se expandem muito com a variação da temperatura e pressão, que precisam ser especificadas ao se informar a densidade do gás.

Exemplo 1:

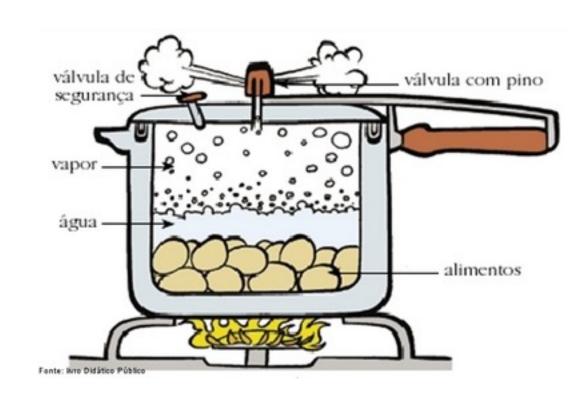
Uma sala de estar tem 4,2m de comprimento, 3,5m de largura e 2,4m de altura.

a) Qual é o peso do ar na sala se a pressão do ar é 1,0 atm? (esse peso é aproximadamente 110 latas de refrigerante)

b) Qual é o módulo da força que a atmosfera exerce sobre o alto da cabeça de uma pessoa, que tem área da ordem de 0,04 m²?

Pressão num Fluido

Quando um corpo está imerso num fluido, sofre a ação de uma força perpendicular em cada ponto de sua superfície. Essa força por unidade de área é chamada de **pressão**.

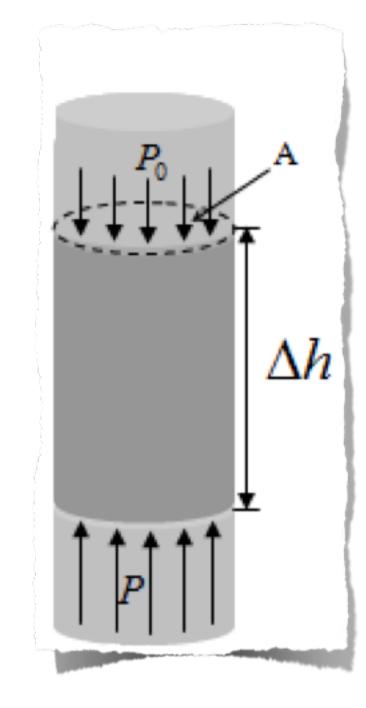

$$P = \frac{F}{A}$$

No SI, pressão é dada em, N/m² chamada de Pascal (Pa).

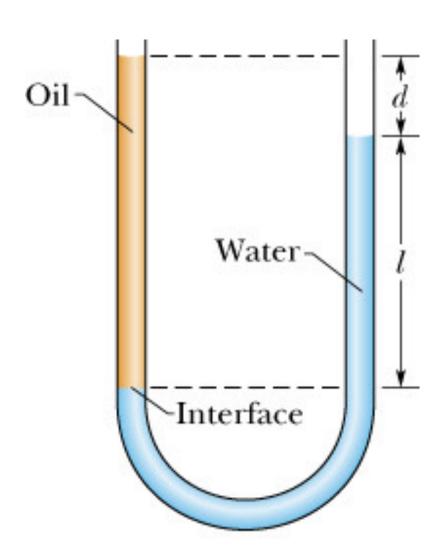
$$1N/m^2 = 1Pa$$

Outras unidades:

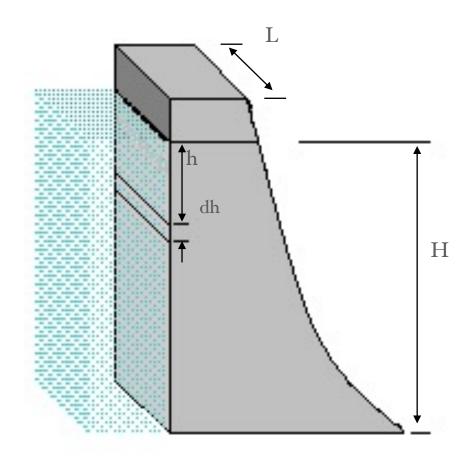
$$(1atm = 101,325kPa \approx 14,70lb/in^2)$$


14.4 Fluidos em Repouso:

Para suportar o peso de uma coluna de líquido de altura, a pressão na base da coluna tem que ser maior do que no topo. O peso da coluna de líquido é dado por:

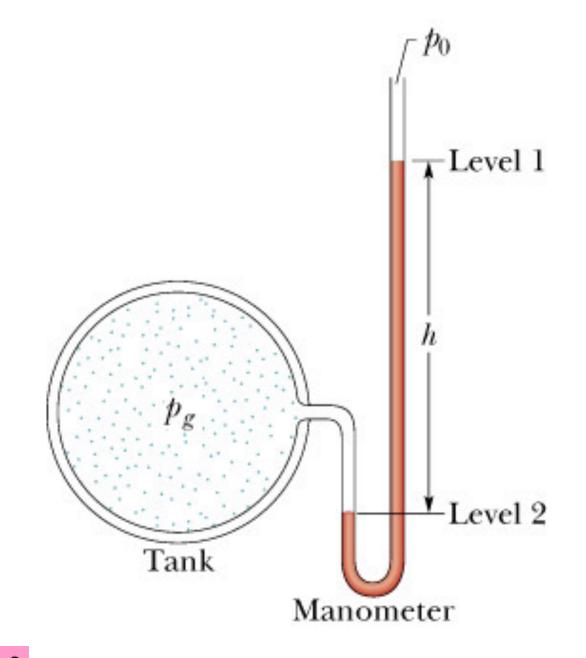

Se P₀ é a pressão no topo e P é a pressão na base, a força resultante orientada para cima, exercida por essa diferença de pressão, é PA - P₀ A. Igualando essa força ao peso da coluna, obtém-se:

$$PA - P_0A = \rho.A.\Delta h.g$$
 ou $P - P_0 = \rho.\Delta h.g$

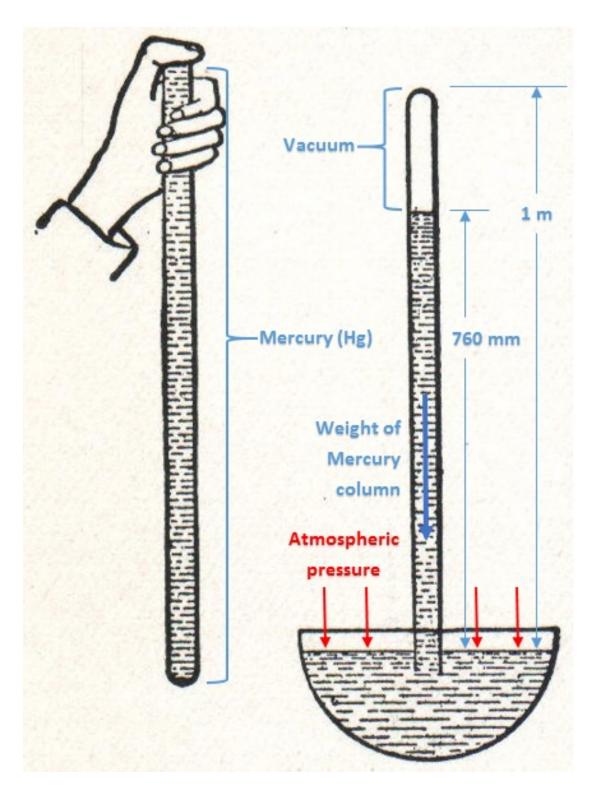

$$P = P_0 + \rho . g. \Delta h$$

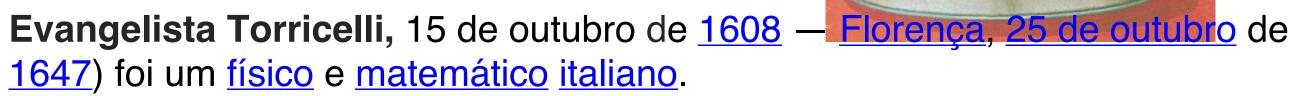
Exemplo 2: O tubo em forma de U da figura contém dois líquidos em equilíbrio estático: do lado direito existe água de massa específica ρ = 998kg/m³, e no lado esquerdo existe óleo de massa específica desconhecida ρ_x . Os valores das distâncias indicadas na figura são I = 135mm e d = 12,3 mm. Qual é a massa específica do óleo?

Exemplo 3: Uma represa retangular, de 30m de largura, suporta uma massa de água com 25m de profundidade. Calcule a força horizontal total que age sobre a represa.



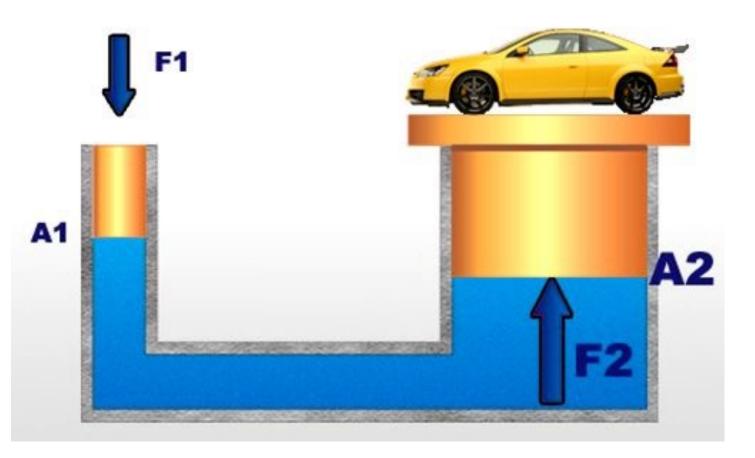
14-5 Medindo Pressão


•Manômetro de Tubo Aberto — é um medidor simples de pressão, constituído de um reservatório que se comunica com um tubo em "U". Uma das extremidades do tubo está sujeita à pressão P_g , que será medida e a outra extremidade aberta, está sujeita a pressão atmosférica P_{at} . A diferença de pressão P_g - P_{at} é chamada de pressão manométrica P_{man} . Logo, a pressão que se deseja medir será:


$$P_{man} = P_g - P_{at} = \rho.g.h$$

Na prática, a pressão é frequentemente medida em milímetros de mercúrio (mmHg), uma unidade chamada **torr**, em homenagem a Evangelista Torricelli. Os sistemas se relacionam por:

 $1atm = 760mmHg = 760torr = 29,9inHg = 101,325kPa = 14,7lb/in^2$

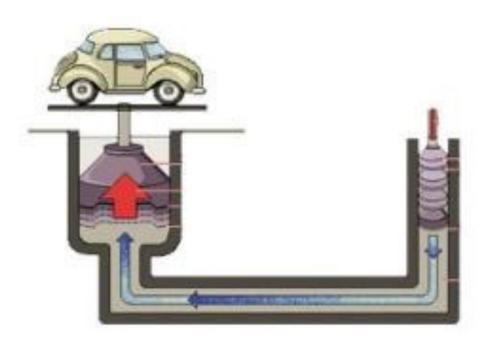


Exemplo 4:

A pressão manométrica média na Aorta humana é de aproximadamente 100mmHg. Converta essa pressão sanguínea média em pascais.

Princípio de Pascal:

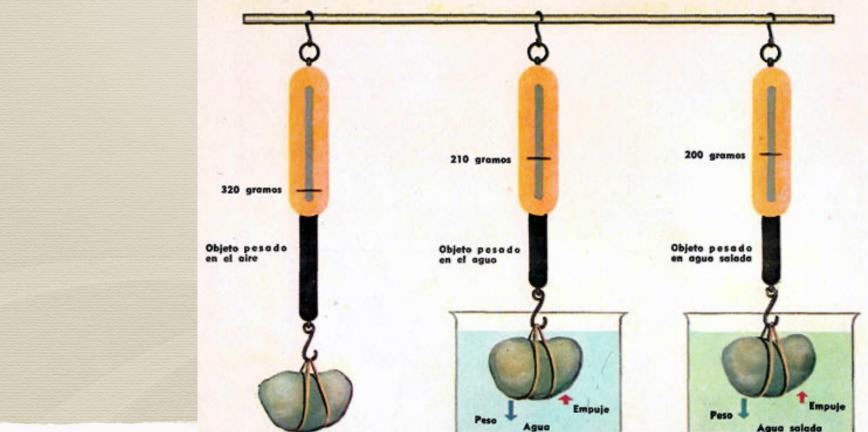
"Uma alteração de pressão aplicada a um líquido confinado é transmitida, sem qualquer diminuição, a todos os pontos do líquido e às paredes do recipiente".


$$\Delta p = \frac{F_1}{A_1} = \frac{F_2}{A_2}$$

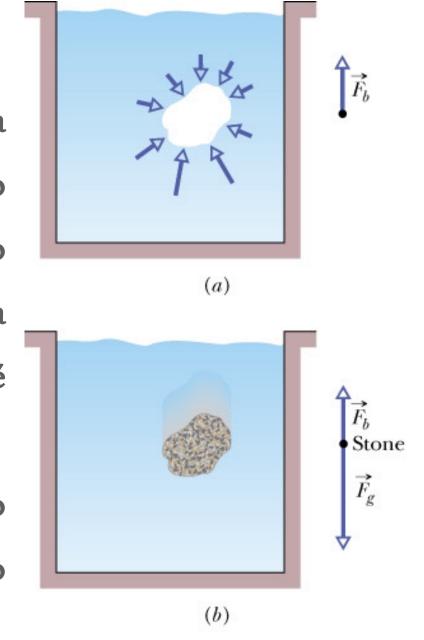
Exemplo 5:

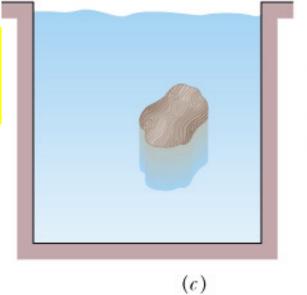
Prensa hidráulica.

O pistão grande de um elevador hidráulica tem 20cm de raio. Que força deve ser aplicada ao pistão menor, de 2cm de raio, para elevar um carro com 1500kg de massa?



Empuxo e Princípio de Arquimedes.




Empuxo e Princípio de Arquimedes.

Se um objeto maciço submerso em água for pesado por uma balança de mola (dinamômetro), o peso aparente do objeto quando submerso será menor do que o peso do objeto. Isso ocorre porque a água exerce uma força de baixo para cima que equilibra parcialmente a força da gravidade. Essa força é chamada de empuxo.

"Um corpo inteiro ou parcialmente submerso em um fluido sofre um empuxo que é igual ao peso do volume de fluido deslocado".

 $E = peso do fluído deslocado = \rho_f V_f g$

Densidade relativa

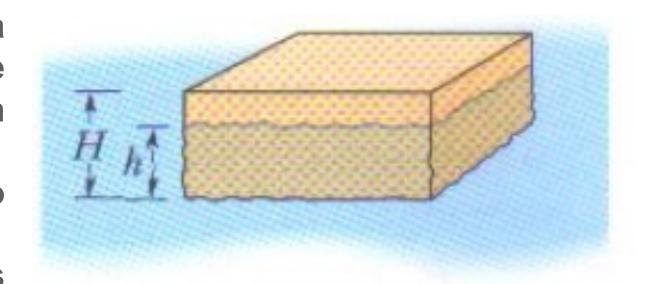
A Densidade relativa de um corpo, ou simplesmente densidade, é igual ao peso de um volume igual de água.

$$Densidade = \frac{peso\ do\ corpo\ no\ ar}{peso\ de\ igual\ volume\ de\ água} = \frac{w}{E_{\acute{agua}}}$$

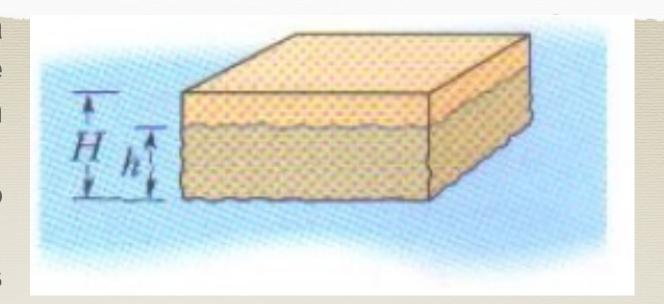
O peso aparente de um corpo submerso em um fluido é igual a diferença entre seu peso e o empuxo

$$\overrightarrow{W}_{ap} = \overrightarrow{W} - \overrightarrow{E}$$

logo:

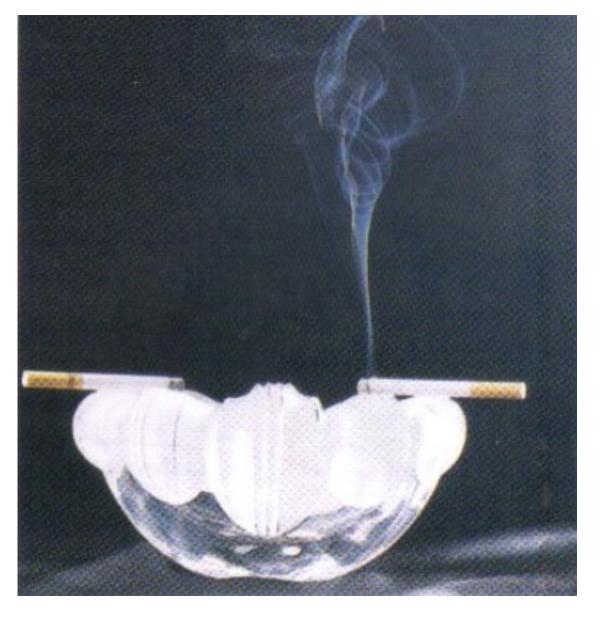

$$\vec{E} = \vec{W} - \vec{W}_{ap}$$

Exemplo 6: Um anel, supostamente de ouro, pesa 0,158N no ar. Quando o anel é preso por um fio e submerso em água, seu peso é de 0,150N. O anel é de ouro puro?


Exemplo 7: Na Figura, um bloco de massa específica 800kg/m³ flutua em um fluido de massa específica 1200kg/m³. O bloco tem uma altura H=6cm.

- a) Qual é a altura h da parte submersa do bloco?
- b) Se o Bloco é totalmente imerso e depois liberado, qual é o modulo da sua aceleração?

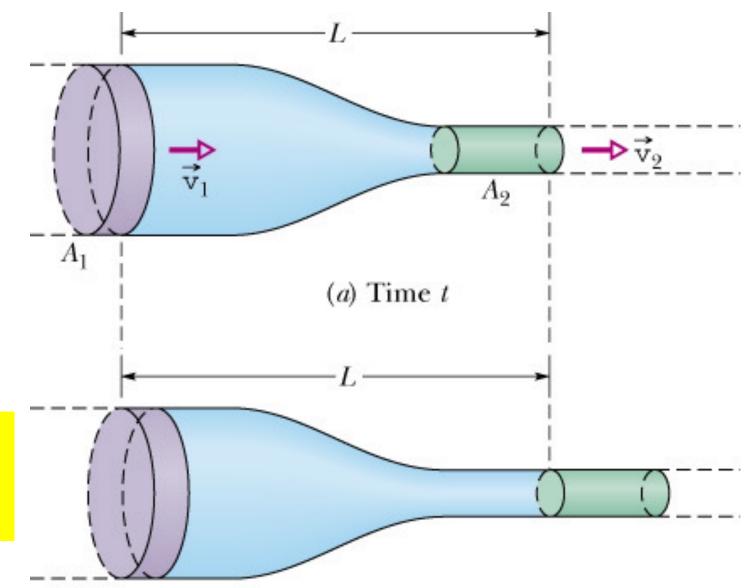
Exemplo 7: Na Figura, um bloco de massa específica 800kg/m³ flutua em um fluido de massa específica 1200kg/m³. O bloco tem uma altura H=6cm.


- a) Qual é a altura h da parte submersa do bloco?
- b) Se o Bloco é totalmente imerso e depois liberado, qual é o modulo da sua aceleração?

43. Um pedaço grande de cortiça pesa 0,285N no ar. Um dinamômetro é fixo no fundo de um recipiente contendo água e a cortiça é presa nele. Devido ao empuxo, a leitura no dinamômetro é 0,855N. Calcule a massa específica da cortiça. (250 kg/m³)

Fluidos em Movimento

O escoamento de um fluido em movimento pode ser muito complexo. Ele pode ser Regular ou Turbulento. O escoamento turbulento é muito difícil de ser descrito, de forma que, neste estudo, nos restringiremos ao escoamento não turbulento, em regime permanente, de um fluido "ideal", que é não-viscoso. Admite-se também que o fluido é incompressível.

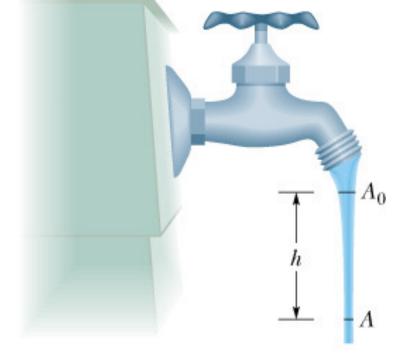


A próxima figura representa o perfil aliado, com área de seção transversal decrescente. O fluido está escoando da esquerda para a direita, e a porção sombreada à esquerda representa o volume ΔV de um fluido que passa pelos pontos 1 e 2 durante um tempo Δt . Desta forma podemos escrever:

$$\Delta V = A_1 v_1 \Delta t$$

$$\Delta V = A_2 v_2 \Delta t$$
logo:

$$A_1 v_1 = A_2 v_2$$

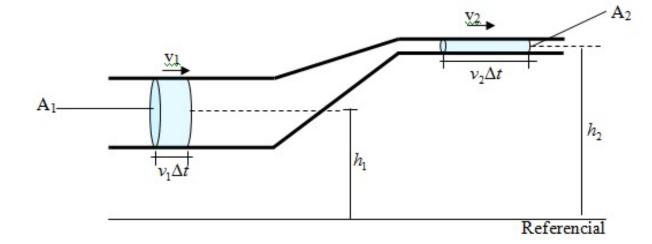

A grandeza(A.v) é chamada de **vazão volumétrica I_v**. Assim:

(b) Time
$$t + \Delta t$$

$$I_v = Av = cons \tan te$$

Equação da Continuidade de um Fluido Incompressível.

Exemplo 9: A Figura mostra que o jato de água que sai de uma torneira fica progressivamente mais fino durante a queda. As áreas das seções retas indicadas são A_0 =1,2 cm² e A=0,35cm². Os dois níveis estão separados por uma distância vertical h=45mm. Qual é a vazão da torneira?


Exemplo 11: O sangue flui numa artéria com raio de 0,3cm, com velocidade de 10cm/s. Devido a uma arteriosclerose, numa região o raio é reduzido a 0,2cm. Qual a velocidade do sangue nesta região?

A Equação de Bernoulli

Relaciona a pressão, a elevação e a velocidade de um fluido *incompressível* num escoamento em regime *permanente*. Pode ser deduzida aplicando-se o teorema do trabalho-energia a um segmento do fluido.

Desta forma:

$$P_1 - P_2 = \rho g h_2 - \rho g h_1 + \frac{1}{2} \rho v_2^2 - \frac{1}{2} \rho v_1^2$$

que reunindo os termos para o ponto 1 e 2 tem-se:

$$P_1 + \rho g h_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g h_2 + \frac{1}{2} \rho v_2^2$$

Este resultado pode ser reescrito como:

$$P + \rho g h + \frac{1}{2} \rho v_1^2 = \text{constante}$$

Equação de Bernoulli

Para um fluido em repouso, $V_1=V_2=0$, assim:

$$P_1 - P_2 = \rho g h_2 - \rho g h_1 = \rho g \Delta h$$

Para um fluido que passa por um estreitamento de tubo mas com alturas iguais, temos:

$$P_1 - P_2 = \frac{1}{2} \rho v_2^2 - \frac{1}{2} \rho v_1^2$$

53. Água escoa a 3m/s em um tubo horizontal, sob uma pressão de 200 kPa. O diâmetro do tubo é reduzido à metade do seu diâmetro original. (a) Qual a velocidade do fluxo na seção reduzida do tubo? (b) Qual a pressão na seção reduzida? (c) Qual a razão entre as vazões da água nas duas seções? Admita que o escoamento seja laminar e despreze a viscosidade do fluido. (12m/s, 133 kPa, as vazões volumétricas são iguais)

45. Um corpo tem empuxo neutro quando sua massa específica é igual à do líquido no qual está mergulhado, de forma que não aflora à superfície nem afunda. Se a massa específica média de um mergulhador de 85 kg for de 0,96kg/L, que massa de chumbo deve carregar para lhe dar empuxo neutro? (3,89kg)