Robô Autônomo Seguidor de Paredes Internas (RASPI)

Ângeli Luiggi de Souza Bazzo, Lucas Nunes Pio angeli.l.bazzo@gmail.com, lucaspio@alunos.utfpr.edu.br. (67)99900-2084, (41)99669-5886

Universidade Tecnológica Federal do Paraná – Campus Curitiba Bacharelado em Engenharia de Computação Oficina de Integração I - S71, S72 2019/2

12 de Setembro de 2019

Resumo

Este documento tem como fim servir de apresentação do projeto que virá a ser executado na disciplina de Oficina de Integração I. Nesta atividade, são apresentados materiais que virão a ser utilizados, ideia geral do protótipo bem como prazos e orçamento para fins organizacionais.

1 Material

O protótipo, ao qual esse documento se refere, consiste em um robô móvel hábil para se locomover no ambiente, seguindo paredes internas que sera construído a partir de hardwares e softwares de controle. Para a execução do projeto serão utilizados hardwares como: Arduíno Uno Figura 1(a), Chassis Redondo 2WD Figura 1(b), Driver Motor Ponte H L298ns Figura 1(c), Motor DC 3-6V, Sensor de Distância Ultrassônico HC-SR04 Figura 1(d), Jumpers, Baterias ; bem como o software: IDE Arduíno. A Tabela 1 faz referencia a alguns destes componentes que necessitaram ser adquiridos e elucida seus respectivos preços.

Tabela 1: Componentes Adquiridos e Preços

Quantidade	Nome	Preço(R\$)
1	Arduíno Uno	54,90
1	Chassis Redondo 2WD	90,90
2		_
	Motor DC 3-6V	
1	Dri-ver Motor Ponte H L298ns	19,90
2		21,80
	Sensor de Distância Ultrassônico HC-SR04	
Indefinido	Jumpers	_
1		6,00
	Baterias	
_	Frete	18,90
Total		193,50

(c) Driver Motor Ponte H L298ns

(d) Sensor de Distância Ultrassônico

Figura 1: Exemplo visual dos componentes que serão utilizados. Imagens retiradas de (THOMSEN, 2011).

2 Descrição

O robô que sera desenvolvido nesse trabalho contará com sensores de proximidade. Este, por sua vez, passará ao Arduíno Uno informações que serão analisadas a partir de conceitos físicos sobre propagação do som (SIDNEY,) e resultarão em uma ação. Por meio do Driver Motor o Arduíno Uno controlará o motor dando significado real para as acoes resultantes do processamento anterior como exemplificado na Figura 2.

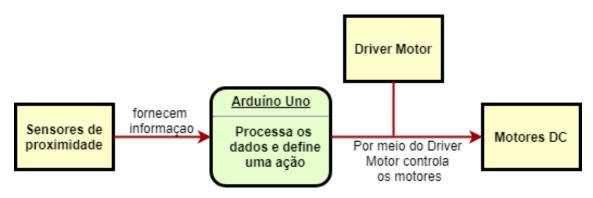


Figura 2: Diagrama de elucidação do funcionamento do robô.

Quanto a lógica de funcionamento do robô esta se dará como na Figura 3 de modo que: o robô, se mantendo sempre a uma distancia ideal da parede que ele segue por meio de manobras para calibração desta distancia, decidirá de acordo com a situação em que se encontra e executara um determinado movimento.

- Seguir em frente: quando não existe uma parede que intercepte seu movimento retilíneo, ambos os motores são ligados à mesma velocidade.
- Girar para esquerda: quando a parede à que o robô esta seguindo esta a uma distancia ideal

porém outra impede seu avanço em linha reta, o robô gira para de modo que a parede que o impedia se torne a que ele deve seguir.

• Virar em arco para a direita: quando a parede que o robô seguia acaba, ele faz uma curva em arco para a direita para continuar a seguir a parede que "fez" uma curva.

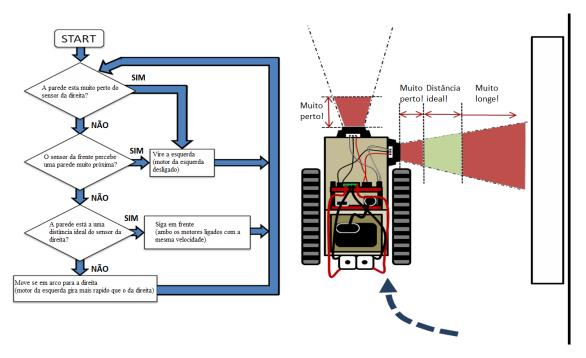


Figura 3: Diagrama de elucidação da lógica de funcionamento do robô. Adaptado de (MCCOMB, 2013)

3 Cronograma

Para o melhor desenvolvimento do protótipo foram elaborados cronogramas, dividindo assim as tarefas em tempos para realização de modo a facilitar o acompanhamento do desdobramento do projeto como um todo. A Figura 4 mostra detalhadamente como se dará esse processo.

3.1 Montagem do Chassi e movimentação básica

O primeiro marco do projeto será a montagem do chassi e garantir que o carrinho consiga fazer os movimentos básicos, entre eles : se mover para frente, virar para a esquerda, virar para a direita e dar ré.

3.2 Anexar Sensores e montar a pista de testes

O segundo marco do projeto sera anexar os sensores ao robô, fazer com que os movimentos possam ser realizados pelos sensores e montar a pista de teste que sera utilizada para fazer os testes necessários para garantir que o projeto esta funcionando corretamente.

3.3 Sincronizar os sensores e a movimentação do robô

O terceiro e ultimo marco será testar o robô na pista e corrigir os movimentos que não estiverem sendo feitos da forma correta para garantir que o projeto seja capaz de efetuar todos os movimentos necessários para percorrer a pista de testes sem colidir nenhuma vez.

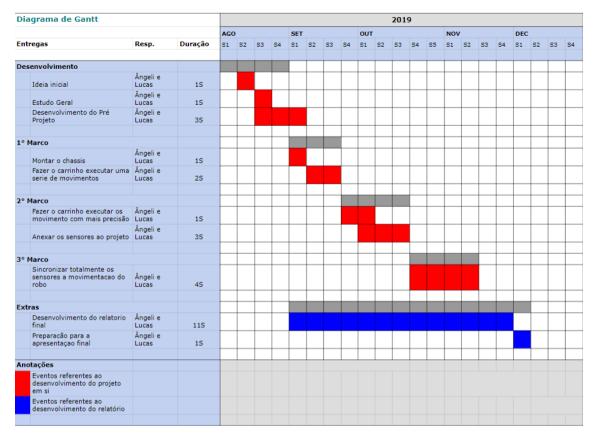


Figura 4: Diagrama de Gantt para planejamento de desenvolvimento.

Referências

MCCOMB, M. Octoblu IoT with chipKit Uno32 + Motor Shield. 2013. Disponível em: $\langle https://chipkit.net/tag/robot/ \rangle$. Acesso em: 12/09/2019.

SIDNEY, G. Protótipo de um robô móvel autônomo seguidor de paredes internas. http://www.xbot.com.br/wp-content/uploads/2012/10/PB $_COENC_2014_{20}2.pdf,p.$ 69.Acessoem:1set.2019.

THOMSEN, A. Filipeflop. 2011. Disponível em: (https://www.filipeflop.com/blog/sensor-ultrassonico-hc-sr04-ao-arduino/). Acesso em: 01/09/2019.