

War Robot

Gabriel Rauta Buiar, Felipe Negrelli Wolter, Luan Carlos Klein*

1° Semestre Abril de 2019

Disciplina: **Oficina De Integração 1**Curso: **Engenharia da Computação**Universidade Tecnológica Federal do Paraná - UTFPR
Avenida Sete de Setembro, 3165 - Curitiba/PR, Brasil - CEP 80230-901

1 Introdução

O projeto, de nome War Robot (do inglês, robô de guerra), a ser desenvolvido no decorrer da disciplina consiste em um robô capaz de realizar micro-tarefas análogas às realizadas em um ambiente de guerra. Ele será formado por uma base, com rodas e sensores e por uma garra (braço mecânico), para auxiliar na realização das tarefas. No tocante à comunicação, ele será controlado por bluetooth, através de um dos celulares dos integrantes. Ao final do cronograma, o robo deverá ser capaz de:

- Desarmar objetos montados simulando bombas;
- Identificar e desviar de minas terrestres;
- Identificar obstáculos grandes e evitar a colisão contra eles;
- Remover obstáculos menores com o braço mecânico.

^{*}gabrielbuiar@gmail.com/ 41984042288, fwolter@alunos.utfpr.edu.br / 41988808586, luan-klein@alunos.utfpr.edu.br/49991993072

2 Visão geral

O diagrama explicativo desenvolvido pela equipe foi construido da forma a seguir para ser um apanhado geral do projeto, envolvendo tanto a parte dos objetivos, das funcionalidades e do funcionamento.

O objetivo é fazer um carro de guerra funcional e prático, que seja controlado pro bluetooh, e que tenha diversos sensores informativos e uteis ao uso do carro, como detector de "minas terrestres" e sensores de distância. Além disso, é fazer com que ele seja confiável, e que funcione da maneira esperada, sem grandes desvios.



Figure 1: Diagrama desenvolvido pelo grupo para exemplificação e resumo do projeto

3 Materiais

Para a construção do projeto, o grupo irá utilizar as seguintes peças:

- Kit chassi 2wd (2 rodas e um suporte traseiro);
- Arduino Mega 250;
- Módulo Driver Ponte H L298N;
- Celulas de Baterias de litio;
- Módulo Sensor De Cor RGB TCS230;
- 4 motores SG 90;
- Kit Braço Robótico Acrílico;
- 2 sensores de distância ultrassônicos HC-SR04;
- Módulo Bluetooth BLE V4.0 HM-10 Keyes;
- Ky-003 Modulo Sensor Hall Magnetico Arduino Fr;
- Parafusos;
- Jumpers;

O ambiente de programação será a IDE do próprio arduino e a montagem do aplicativo será feita pelo Blynk. Para eventuais dúvidas, o material de consulta será sites da internet com datasheets e que ensinam como utilizar módulos e componetes. Dentre os que serão utilizados, cabe citar o site "filipeflop", "usina info" entre outros.

Material	Preço
Arduino Mega 2560 R3	30,00
Kit chassi 2wd com shield	50,90
Módulo Sensor De Cor RGB TCS230	15,90
Módulo bluetooh	12,66
Sensor de Distância Ultrassônico - HC-SR04	3,59
Kit Braço Robótico Acrílico, Servos e Parafusos	84,99
Kit 4 Baterias de litio	28,65
Pacote jumpers	8,25
Ky-003 Modulo Sensor Hall Magnetico Arduino	3,43
Valor total	238,37

Table 1: Tabela de preços

4 Planejamento

O projeto foi planejado para ser desenvolvido em três partes: A base, também chamada de carro, irá conter as rodas e os sensores, e fará a parte da movimentação, detecção e sustentação; a garra, que é o braço mecânico, que irá desarmar a bomba desconectando o cabo e irá remover os obstáculos menores; E por fim a integração de ambas as partes, as duas controladas por um aplicativo de celular, que será montado pelo grupo. Os três marcos ficaram definidos da seguinte forma:

- 1 Montagem do carro, que consiste na montagem do hardware do carro e montagem dos sensores, além da motagem do aplicativo que se comunicará com a base e a garra.
- 2 Montagem da garra, que é formada por 4 servomotores, e configuração da comunicação com o aplicativo.
- 3 Integração robô, montagem da versão final do robô e ajustes finais para refinamento do funcionamento do carro.

Cronograma Projeto

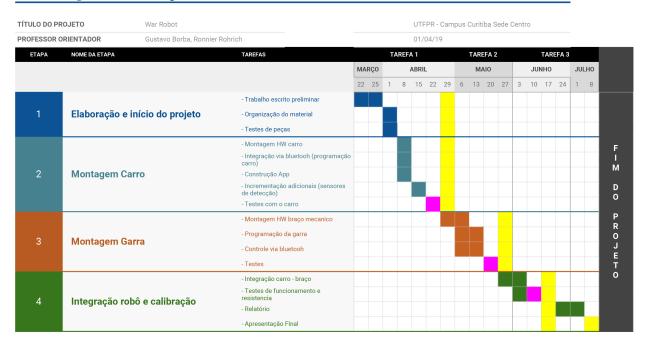


Figure 2: Planejamento detalhado do projeto

5 Objetivos extras

Além de tudo o que foi citado acima, o grupo tem por objetivo secundário, utilizar o reconhecimento de cor na garra, para que o mesmo consiga desarmar a bomba sozinho, sem nenhum controle humano direto. Ele irá reconhecer a cor do fio, e através de um padrão pré-definido, ele irá agarrar o fio, verificar se deve tirar aquele fio, e se aquele fio estiver no padrao definido, ele irá "arranca-lo", caso contrario, deixara o fio no local, preso.

Para tal feito, seria necessária uma precisão da garra e do sensor de cor da qual não estamos certos se os equipamentos utilizados são capazes. Logo, resta-nos ainda definir se existe a possibilidade desses requisitos extras serem cumpridos, o que só poderá ser verificado com o projeto em um estágio mais avançado.