Cubo de Led 4x4x4 - Oficina de Integração 1 - Engenharia de Computação

Henrique Castro Santos, Wellington Montagnini, Adrianne Toinko

¹Universidade Tecnológica Federal do Paraná (UTFPR)

henricastrosantos@gmail.com, {montagnini,adriannetoinko}@alunos.utfpr.edu.br 8515-1478, 9852-2542, 9709-3937

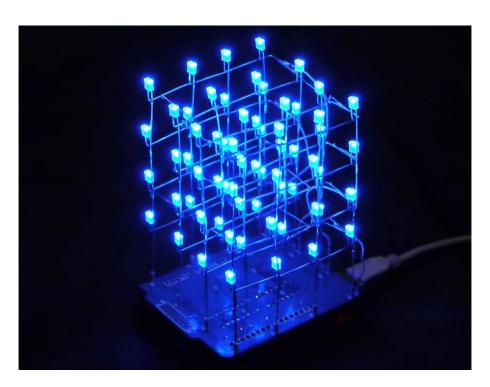


Figura 1. Exemplo de um cubo 4x4x4

1. Visão Geral

O projeto escolhido, como debatido em sala, foi um cubo de LEDs 4x4x4 que ao estar integrado com o arduino e com a implementação correta, poderá ser acendido em diversos padrões. Com um total de 64 LED's disponiveis, existem muitas maneiras de acende-los e transformar tudo isso em algo organizado, pode ser um grande desafio. Outro desafio será criar uma estrutura forte o suficiente para manter os LEDs no formato de um cubo.

A ideia principal por trás do cubo é a de trazer uma ilusão de continuidade na iluminação dos LEDs e para atingir tal objetivo, é necessário enviar uma sequência de sinais com um timing muito específico para cada LED.

O cubo vai funcionar através de uma multiplexação de nivel 2^4 , onde o arduino mandará um sinal e o circuito integrado transimitira outro de 0 a 15. Esses sinal ira determinar coluna do cubo que estará energizada e, para fechar o curto, é necessário que

o polo negativo seja ativado através de um transistor. Porém, o CI de multiplexação manda um sinal positivo para todos os LEDs menos para um e isso é exatamente o contrário do que buscamos e para inverter o sinal, utilizamos os circuitos NOT.

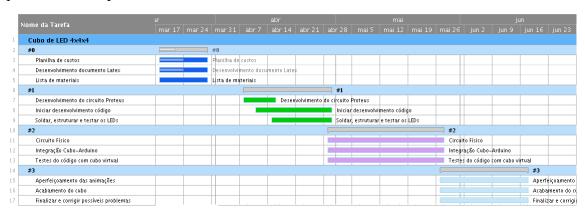


Figura 2. Diagrama de Gantt

2. Cronograma

2.1. Marco 1

2.1.1. Estruturar cubo

Primeiramente, vamos soldar todos os LEDs em forma de cubo e vamos verificar que todos estão funcionando como deveriam.

2.1.2. Circuito e Código

Aqui, vamos iniciar o desenvolvimento do código e tentar estruturar como vamos controlar o cubo. Além disso, vamos desenvolver o esquemático do nosso circuito no Proteus.

2.2. Marco 2

2.2.1. Circuito Físico

Vamos transformar o projeto desenvolvido no Proteus em algo real e verificar se tudo está funcionando como deveria.

2.2.2. Integração

Iniciaremos a integração do cubo com o Arduino, verificando se temos controle sobre todos os LEDs como desejamos. Além disso, vamos começar a testar o código desenvolvido em um cubo virtual para acelerar o processo de desenvolvimento de animações e padrões de acendimento dos LEDs.

2.3. Marco 3

2.3.1. Animações

Já possuindo controle total sobre os LEDs, vamos aperfeiçoar e criar novos padrões de acendimento para o cubo.

2.3.2. Acabamento

Vamos reservar a maior parte da finalização para dar acabamento ao cubo e corrigir problemas que podem surgir durante o desenvolvimento.

3. Componentes

Item	Quantidade	Valor unitário	Valor
Kit Led	1,00	R\$ 60,00	R\$ 60,00
74HC154	1,00	R\$ 14,75	R\$ 14,75
Porta Lógica Not	3,00	R\$ 1,95	R\$ 5,85
Transistor 2N222	4,00	R\$ 0,25	R\$ 1,00
Placa Fenolite 15x15cm	1,00	R\$ 5,90	R\$ 5,90
Jumper (metro)	5,00	R\$ 1,00	R\$ 5,00
Bateria 9v	1,00	-	-
Clip Bateria	1,00	R\$ 2,80	R\$ 2,80
Resistor 1k	16,00	R\$ 0,10	R\$ 1,60
Push Button	1,00	R\$ 3,00	R\$ 3,00
Switch Button	1,00	R\$ 1,80	R\$ 1,80
Arduino Mega	1	-	-
Soquete 6 pinos	3	R\$ 0,40	R\$ 1,20
Soquete 16 pinos	1	R\$ 1,50	R\$ 1,50
Estanho	1	-	-
Clips de Papel	16	-	-
Total			R\$ 104,40

Figura 3. Orçamento

Hardware:

- 64 leds alto brilho
- Arduino
- Circuito integrado de multiplexação
- 3 Circuitos integrados NOT
- Bateria 9V
- Botão SW
- Push Button
- 4 Transistores
- Caixa de madeira

Software:

- Arduino IDE
- Proteus
- Visual Studio