Snake com Rede Neural

Guilherme D'Albuquerque Hadryan Salles Ricky Lemes Habegger

30 de abril de 2019

1 Identificação

Curso: Engenharia de Computação Disciplina: Oficina de Integração 1

Turma: S71 Período: 3 Equipe:

Nome e-mail

Guilherme D'Albuquerque contatoguialbuquerque@gmail.com Hadryan Salles hadryansalles@alunos.utfpr.edu.br Ricky Lemes Habegger rickylemeshabegger@gmail.com

2 Introdução

A priori, este projeto tem como objetivo desenvolver três principais recursos, sendo eles: um ambiente de execução para o jogo Snake (popularmente conhecido como "jogo da cobrinha"), uma rede neural que será usada como Inteligência Artificial para controlar o jogo, e por último um componente para transmitir a imagem do jogo até um monitor. Entretanto, para retirar a necessidade de um computador pessoal desses processos, serão usados micro-controladores, onde cada recurso terá um micro-controlador para realizar suas atividades. Além disso, a comunicação entre esses controladores será feita a partir de saídas lógicas, sendo estas, em conjunto com a transferência de dados para o monitor, os únicos artifícios implementados com auxílio de bibliotecas externas.

3 Visão Geral

3.1 Camadas de abstração

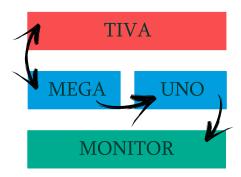


Figura 1: Camadas de abstração e setas representando suas interações

A figura 1 conta com um diagrama de como se dará a comunicação entre os controladores. O Arduino Mega enviará o mapa do jogo para TIVA-C, já este, irá devolver ao Mega uma direção para o movimento da Snake (personagem controlável). Após isto, o Arduino Mega irá processar o comando e enviar a imagem do jogo para o Arduino Uno, que sera encarregado de transferir os sinais de imagem para o monitor.

3.2 Módulos

O trabalho será dividido em quatro módulos principais, que estão representados na figura 2.

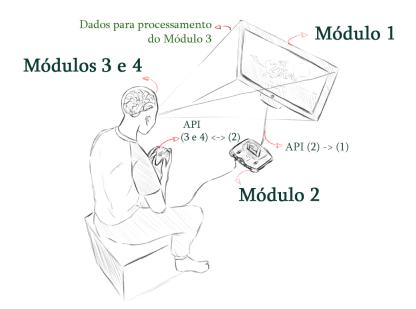


Figura 2: Analogia entre os módulos do projeto e uma pessoa jogando video game

- Módulo 1: Conversor de sinal analógico para VGA, que transformará uma imagem recebida pelo console (Arduino Mega) em uma saída VGA. Será implementado utilizando um Arduino UNO e um conector VGA.
- Módulo 2: Ambiente de execução do jogo *Snake*, responsável pelo controle e processamento do jogo. Será o módulo principal pois irá se comunicar com os módulos de transmissão de imagens e de execução da rede neural.
- **Módulo 3:** Biblioteca de rede neural em C. A rede neural terá o proposito de simular um jogador para o jogo *Snake*, e para aprimorar este "Cérebro Artificial" será utilizado o módulo 4.
- Módulo 4: Algoritmo genético para determinar os melhores coeficientes da rede neural, e, consequentemente, aperfeiçoa-la. Implementado e executado em um computador pessoal.

4 Cronograma

4.1 Datas

• **Inicio:** 01/04/2019

• Conclusão: 08/07/2019

4.2 Marcos



Figura 3: Diagrama de Gantt

- 1. Conteúdos programáveis básicos para o projeto. Implementar o jogo *Snake* por completo, e também, uma rede neural genérica e aleatória, com funcionalidades essenciais de criação, ativação, e importação/ exportação de dados. Além disso, transferir a execução do jogo e da rede neural para Arduino Mega e Tiva C, respectivamente.
- 2. Protocolo de comunicação entre os controladores. Construir as APIs de cada módulo para realizar a comunicação entre eles. Neste marco haverá uso de bibliotecas externas.
- 3. Algoritmo genético e treinamento da rede neural. Implementar o Algoritmo Genético, e através de um computador pessoal, aperfeiçoar a rede neural. Após a Rede Neural estar otimizada, com a melhor configuração possível para comandar o jogo, exportar seus dados para o Tiva Launchpad, podendo recriar o "cérebro" após o treinamento.

5 Materiais utilizados

- Lista de Componentes
 - 1 LaunchPad Tiva C Series TM4C123GXL

- 1 Arduino Uno
- 1 Arduino Mega
- -1 Monitor com saída VGA
- 1 Protoboard
- 1 Soquete DB15 (Adaptador VGA)
- Ferramentas de Software
 - Arduino IDE
 - Code Composer Studio

Item	Custo unitário(R\$)	Quantidade	Custo
Arduino UNO	R\$ 45,00	1	R\$ 45,00
Arduino MEGA	R\$ 60,00	1	R\$ 60,00
Tiva C tm4c123gxl	R\$ 82,00	1	R\$ 82,00
Resistor 68 Ω	R\$ 0,05	2	R\$ 0,10
Resistor 470 Ω	R\$ 0,05	2	R\$ 0,10
Conector vga (par)	R\$ 3,00	1	R\$ 3,00
Pinos para conector VGA	R\$ 0,10	15	R\$ 1,50
Pacote de jumpers	R\$ 13,00	1	R\$ 13,00
Monitor com saida VGA	*	1	*
Custo Total	-	-	R\$ 204,70

Tabela 1: Levantamento de custos