

Ministério da Educação Universidade Tecnológica Federal do Paraná Pró-Reitoria de Graduação

Pró-Reitoria de Graduação Departamento Acadêmico de Eletrônica

Aula de Laboratório 04 (31/03/2016) Atividade de Laboratório 3

Disciplina: Fundamentos de Análise de Circuitos Elétricos Professores: César M. Vargas Benítez e Douglas Roberto Jakubiak Tempo para execução das experiências: 2 aulas de 50 minutos Equipamentos Osciloscópio Multímetro Digital Componentes Resistores (ver lista)

NOME	Código			
NOME	Código			

TÉCNICAS DE ANÁLISE DE CIRCUITOS-2

OBJETIVO: ao final da experiência o estudante será capaz de: a) medir com o osciloscópio níveis de tensão continua constante, c) verificar a validade da aplicação em circuitos reais de corrente continua constante dos teorema da superposição, de Thévenin, Norton e da Transformação de Fonte.

FUNDAMENTOS TEÓRICOS

Os teoremas da superposição, Thévenin, Norton e de Transformação de Fonte são aplicáveis aos modelos ideais lineares de circuitos de corrente continua. O teorema da superposição estabelece que a resposta de qualquer elemento em uma estrutura bilateral *linear* que contenha duas ou mais fontes, é a soma das respostas obtidas individualmente por cada fonte, com todas as demais fontes *anuladas*. O teorema de Thévenin estabelece que qualquer circuito bipolar, por mais complexo que seja, visto de um ponto do circuito em relação ao referencial pode ser substituído por uma única fonte de tensão em série com um resistor ou impedância. O teorema de Norton estabelece que qualquer circuito bipolar, por mais complexo que seja, visto de um ponto do circuito em relação ao referencial pode ser substituído por uma única fonte de corrente em paralelo com um resistor ou impedância. O teorema da Transformação de Fonte estabelece que uma fonte de tensão em série com um resistor R (ou impedância Z) terá efeito idêntico ao de uma fonte de corrente, onde I = V/R, em paralelo com um resistor (ou impedância) cujo valor de R (Z) é idêntico ao usado na fonte de tensão.

PARTE PRÁTICA

Observação: Este circuito é o mesmo da Atividade de Laboratório 2, mesmo assim, todos os componentes devem ser medidos antes do experimento e, anotados no esquema do circuito da figura 1.

Experimento 1 (sobre o Teorema da Superposição)

a) Montar o circuito da figura 1.

- b) Medir e anotar na tabela do experimento os valores das tensões solicitadas com as fontes V_{F1} e V_{F2} conectadas. Observe bem a polaridade e anote nocircuito.
- c) Para o relatório calcule o valor das correntes solicitadas na tabela e os respectivos erros.
- d) Medir e anotar na tabela do experimento os valores das tensões solicitadas com a fonte V_{F1} conectada e a fonte V_{F2} anulada (retire a fonte e coloque um "jumper" no lugar).
- e) Para o relatório calcule o valor das correntes solicitadas na tabela e os respectivos erros.
- f) Medir e anotar na tabela do experimento os valores das tensões solicitadas com a fonte V_{F2} conectada e a fonte V_{F1} anulada (retire a fonte e coloque um "jumper" no lugar).
- g) Para o relatório calcule o valor das correntes solicitadas na tabela e os respectivos erros.
- h) Com os dados obtidos na tabela do experimento 1 prove a validade do teorema da superposição. Considere o erro experimental.
- i) Conclua sobre os resultados obtidos no experimento 1.

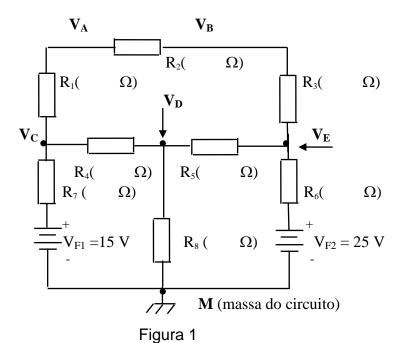


Tabela do Experimento 1

	Tab	ela do i	zxperiii	nento 1			1	1
Tensões com as fontes V_{F1} e V_{F2} conectadas.	V _A	V _B	Vc	V _D	VE	V _{BC}	V _{EC}	V _{DE}
Tensão(V) com OSC.								
Tensão(V) com mult.								
Tensão teórica*								
Erro %								
Tensões com a fonte V_{F1} conectada e a fonte V_{F2} anulada.	V _A	V _B	V _C	V _D	V _E	V _{BC}	V _{EC}	V _{DE}
Tensão(V) com OSC.								
Tensão(V) com mult.								
Tensão teórica*								
Erro %								
Tensões com a fonte V_{F2} conectada e a fonte V_{F1} anulada.	V _A	V _B	V _C	V _D	V _E	V _{BC}	V _{EC}	V _{DE}
Tensão(V) com OSC.								
Tensão(V) com mult.								
Tensão teórica*								
Erro %								
Correntes com as fontes V_{F1} e V_{F2} conectadas.	I _{R1} .	I _{R2} .	I _{R3} .	I _{R4} .	I _{R5} .	I _{R6} .	I _{R7} .	I _{R8} .
Corrente calculada (mA)								
Corrente teórica (mA) *								
Erro %								
Correntes com a fonte V_{F1} conectada e a fonte V_{F2} anulada.								
Corrente calculada (mA)								
Corrente teórica (mA) *								
Erro %								
Correntes com a fonte V_{F2} conectada e a fonte V_{F1} anulada.								
Corrente calculada (mA)								
Corrente teórica (mA) *								
Erro %								
L110 /0		<u> </u>						

^{*}Calculada com os valores reais dos componentes.

Experimento 2 (sobre os Teoremas de Thévenin, Norton e Transformação de Fonte)

- j) Retorne o circuito da figura 1 a configuração original (V_{F1} e V_{F2} conectadas).
- k) Entre os pontos C e E conecte um resistor de carga R_L de valor igual a 136 Ω . Medir e anotar na tabela o valor real de R_L e, da tensão sobre R_L e da corrente em R_L .
- I) Retire R_L e, meça e anote novamente o valor da tensão V_{CE}.
- m) Sem R_L meça a corrente entre o ponto C e o ponto E do circuito.
- n) Retire as fontes V_{F1} e V_{F2} e substitua por um curto-circuito (coloque um "jumper" no lugar das fontes). Meça e anote na tabela o valor da resistência entre o ponto C e o ponto E.
- o) Com os dados obtidos desenhe o circuito equivalente de Thévenin.
- p) Faça um novo desenho do equivalente de Thévenin com R_L medido conectado. Verifique (calcule) se a tensão e a corrente em RL são as mesmas que a medida no circuito da figura 1.
- q) Com os dados obtidos use o teorema da transformação de fonte calcule e desenhe o circuito equivalente de Norton.
- r) Faça um novo desenho do equivalente de Norton com R_L medido conectado. Verifique se a tensão e a corrente em RL são as mesmas que a medida no circuito da figura 1.
- s) Calcule de forma teórica os equivalentes de Thévenin e Norton.
- t) Conclua sobre os resultados obtidos no experimento 2.

Tabela do Experimento 2

Valor medido de R _L	
Tensão sobre R _L	
Corrente em R _L (mA)	
Tensão V _{CE} . Sem R _L	
Corrente de C para E sem R _L	
Resistência R _{AC} sem R _L	

Lista de componentes utilizados:

 $R_4 = 82 \Omega^{-1}/4 W = valor medido$

11 - 02 22 74 VV Valor mediae.
$R_2 = 220 \Omega$ ¼ W - valor medido:
R_3 = 150 Ω ¼ W - valor medido:
$R_4 = 270 \Omega$ ¼ W - valor medido:
$R_5 = 560 \Omega \% W$ - valor medido:
$R_6 = 150 \Omega$ ¼ W - valor medido:
$R_7 = 100 \Omega$ ¼ W - valor real medido:
$R_8 = 180 \Omega$ ½ W - valor real medido:

O relatório deve conter:

- 1) o cálculo do circuito usando o teorema da superposição;
- 2) o cálculo do circuito usando o teorema de Thévenin e a comparação com os valores obtidos na prática;
- 3) o cálculo do circuito usando o teorema de Norton e a comparação com os valores obtidos na prática;
- 4) as conclusões sobre cada um dos experimentos;
- 5) o desenho dos circuitos equivalentes de Norton e Thévenin com os dados calculados;
- 6) a análise usando os valores medidos para os circuitos equivalentes de Thévenin e Norton e uma conclusão sobre o teorema da transformação de fonte e;
- 7) uma avaliação final sobre os resultados obtidos.