

Ministério da Educação Universidade Tecnológica Federal do Paraná

Pró-Reitoria de Graduação Departamento Acadêmico de Eletrônica

Aula de Laboratório 03 (17/03/2016) Atividade de Laboratório 2

Disciplina: Fundamentos de Análise de Circuitos Elétricos Professores: César M. Vargas Benítez e Douglas Roberto Jakubiak Tempo para execução das experiências: 2 aulas de 50 minutos

Equipamentos
Osciloscópio
Multímetro Digital
Componentes
Resistores (ver lista)

NOME	Código				
NOME	Código				

TÉCNICAS DE ANÁLISE DE CIRCUITOS-1

OBJETIVO: ao final desta experiência o estudante será capaz de: a) conectar os terminais de componentes para a montagem de um circuito em uma matriz de contatos (protoboard), b) medir com o osciloscópio níveis de tensão continua constante, c) verificar na prática a transformação delta em estrela e, d) verificar a validade da aplicação em circuitos reais de corrente continua, das leis de Kirchhoff.

1) FUNDAMENTOS TEÓRICOS

As leis de Kirchhoff e a topologia de redes são aplicáveis aos modelos ideais lineares de circuitos de corrente continua. O elemento de circuito resistência, não corresponde exatamente ao componente resistor. Tais componentes como foi visto no primeiro experimento podem ter como modelo a associação de vários elementos que nem sempre se comportam de forma linear. Através das leis de Kirchhoff podemos obter o método da conversão delta para estrela.

PARTE PRÁTICA

Observações:

- Os valores dos resistores estão na próxima página. Como os resistores têm uma tolerância (5% ou 10%), seus valores reais devem ser medidos e anotados no circuito antes do inicio das medidas das tensões e correntes.
- 2) Neste experimento você medirá as tensões com o osciloscópio e com o multímetro e, as correntes com o multímetro.

Experimento

- a) Após medir todos os resistores montar o circuito da figura 1 sem conectar a fonte.
- b) Anotar os valores reais dos resistores no diagrama do circuito.
- c) Antes de conectar as fontes use cabinhos para "protoboard" (wire jumper) e meça a resistência R_{CE} = .
- d) Conecte a fonte com o valor de tensão indicado e, meça e anote os valores das tensões solicitadas na tabela.
- e) Medir e anotar os valores das correntes em cada resistor com o multímetro.

- f) Com os valores reais dos resistores calcule a resistência R_{CE} que foi medida no item c.
- g) Com os valores reais dos resistores use o método das tensões nodais e correntes de malha para determinar os valores das tensões e correntes do circuito;
- h) Conclua a respeito das medidas e dos cálculos obtidos por malhas;
- i) Conclua a respeito das medidas e dos cálculos obtidos por nós e;
- j) Conclua a respeito das medidas e dos cálculos obtidos na determinação da resistência R_{CE}.
- k) Faça uma avaliação dos resultados dos experimentos realizados

(Avaliar é explicar o "por quê?" dos resultados obtidos. É determinar ou calcular a validade destes resultados).

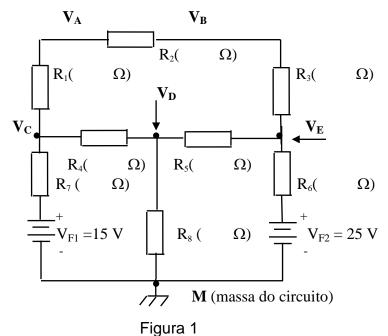


Tabela do Experimento

	Iak	eia uu	Lxbeii	inento	1	1		1
	V _A	V _B	Vc	V _D	VE	V _{BC}	V _{EC}	V _{DE}
Tensão(V) com OSC.								
Tensão(V) com mult.								
Tensão teórica*								
Erro %								
	I_{R1} .	I_{R2} .	I_{R3} .	I_{R4} .	I_{R5} .	I_{R6} .	I_{R7} .	I_{R8} .
Corrente (mA) medida								
Corrente (mA) teórica*								
Erro %								

^{*}Calculada com os valores reais dos componentes.

$R_1 = 82 \Omega$ ¼ W valor medido:
$R_2 = 220 \Omega$ ¼ W valor medido:
$R_3 = 150 \Omega \% W \text{ valor medido: } $
$R_4 = 270 \Omega$ ¼ W valor medido:
$R_5 = 560 \Omega \% W$ valor medido:
$R_6 = 150 \Omega$ ¼ W valor medido:
$R_7 = 100 \Omega$ ¼ W valor real medido:
$R_8 = 180 \Omega$ ¼ W valor real medido:

Lista de componentes utilizados: