Curso de Bacharelado em Engenharia Mecânica PG0064 – Laboratório de Sistemas Fluidotérmicos Prática – Trocador de Calor de Tubos Concêntricos

O relatório desta atividade prática deve ser enviado, conforme modelo disponibilizado, contendo todos os dados, tabelas e gráficos, bem como as discussões e conclusões observadas, de acordo com os itens a seguir:

- 1. Para o trocador de calor de tubos concêntricos com fluxos concorrentes, construir uma tabela contendo:
 - Vazões volumétricas dos fluxos quente e frio, Q_h e Q_c (rotâmetros).
 - Temperaturas nos termopares, T_k (k = 1, 2, ..., N).
 - Taxas de transferência de calor dos fluxos quente e frio, q_h e q_c .
 - Taxa de transferência de calor devido às perdas, q_l.
 - Diferença de temperatura média logarítmica, ΔT_{lm} .
 - Coeficiente global de transferência de calor, U.
 - Número de unidades de transferência, NTU.
 - Coeficiente de capacidade, C_R .
 - Efetividade experimental, ε .
 - Efetividade pelo método NTU, ε_{NUT} .
 - Temperaturas dos fluxos quente e frio na saída do trocador, $T_{h,out}$ e $T_{c,out}$ (pela efetividade experimental).
 - Velocidades dos fluxos quente e frio no trocador, V_h e V_c .
 - Números de Reynolds dos fluxos quente e frio no trocador, Re_h e Re_c.
- 2. Plotar as seguintes curvas para o trocador de calor de tubos concêntricos com fluxos concorrentes:
 - $z \times T_h$, sendo z a posição axial ($z_1 = 0$ m, $z_2 = 0.5$ m e $z_3 = 1.0$ m) e T_h a temperatura do fluxo quente.
 - $z \times T_c$, sendo z a posição axial ($z_1 = 0$ m, $z_2 = 0$, 5 m e $z_3 = 1$,0 m) e T_c a temperatura do fluxo frio.
- 3. Repetir as etapas 1 a 2 para o trocador de calor de tubos concêntricos com fluxos em contracorrente.

Dados:

- Comprimento da seção de troca térmica, $L = 2 \times 0.5 = 1.0$ m.
- Tubo interno consiste de um tubo de cobre onde escoa o fluxo quente:
 - Diâmetro interno, $d_{in} = 16$ mm.
 - Diâmetro externo, $d_{out} = 18 \text{ mm}$.
- Tubo externo consiste de um tubo de cobre onde escoa o fluxo frio:
 - Diâmetro interno, $D_{in} = 26 \text{ mm}$.
 - Diâmetro externo, $D_{out} = 28 \text{ mm}.$