Curso de Bacharelado em Engenharia Mecânica PG0064 – Laboratório de Sistemas Fluidotérmicos Prática – Sistemas de Bombeamento – Curvas Características e NPSH

O relatório desta atividade prática deve ser enviado, conforme modelo disponibilizado, contendo todos os dados, tabelas e gráficos, bem como as discussões e conclusões observadas, de acordo com os itens a seguir:

- 1. Para cada valor de rotação *n* da bomba, construir uma tabela contendo:
 - Vazão volumétrica Q (rotâmetro).
 - Pressão no vacuômetro P_V .
 - Pressão no manômetro P_M .
 - Torque *T*.
 - Altura manométrica H.
 - Potência W.
 - Rendimento η.
- 2. Apresentar as incertezas:
 - De medição para Q, $P_V \in P_M$.
 - Propagadas para $H \in W$.
- 3. Determinar a rotação específica característica n_q e identificar qual o tipo de rotor da bomba.
- 4. Determinar o número específico de rotações por minuto n_s e identificar qual o tipo de rotor da bomba.
- 5. Plotar as seguintes curvas para todos os valores de *n* da bomba (em um único gráfico):
 - \bullet $Q \times H$
 - $Q \times W$
 - $Q \times \eta$
- 6. Repetir as etapas 1 e 5 para cada valor de n da bomba em função do valor inicial de P_V (regulado através da válvula a montante da bomba).
- 7. Plotar a curva $Q \times NPSH$ e determinar graficamente o ponto de operação (se houver) a partir do qual existe risco de cavitação, para cada valor de n da bomba em função do valor inicial de P_V .
- 8. Discutir sobre a análise de resultados realizada.